Plant protoplasts provide starting material for of inducing pluripotent cell masses that are competent for tissue regeneration in vitro, analogous to animal induced pluripotent stem cells (iPSCs). Dedifferentiation is associated with large-scale chromatin reorganisation and massive transcriptome reprogramming, characterised by stochastic gene expression. How this cellular variability reflects on chromatin organisation in individual cells and what factors influence chromatin transitions during culturing are largely unknown. Here, we used high-throughput imaging and a custom supervised image analysis protocol extracting over 100 chromatin features of cultured protoplasts. The analysis revealed rapid, multiscale dynamics of chromatin patterns with a trajectory that strongly depended on nutrient availability. Decreased abundance in H1 (linker histones) is hallmark of chromatin transitions. We measured a high heterogeneity of chromatin patterns indicating intrinsic entropy as a hallmark of the initial cultures. We further measured an entropy decline over time, and an antagonistic influence by external and intrinsic factors, such as phytohormones and epigenetic modifiers, respectively. Collectively, our study benchmarks an approach to understand the variability and evolution of chromatin patterns underlying plant cell reprogramming in vitro.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11234377 | PMC |
http://dx.doi.org/10.1242/jcs.261703 | DOI Listing |
Nucleic Acids Res
January 2025
Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
AUTS2 syndrome is characterized by intellectual disability and microcephaly, and is often associated with autism spectrum disorder, but the underlying mechanisms, particularly concerning microcephaly, remain incompletely understood. Here, we analyze mice mutated for the transcriptional regulator AUTS2, which recapitulate microcephaly. Their brains exhibit reduced division of intermediate progenitor cells (IPCs), leading to fewer neurons and decreased thickness in the upper-layer cortex.
View Article and Find Full Text PDFGenomics
January 2025
Microbe Interactomics Group, Dept. Animal Sciences, Wageningen University & Research (WUR), Wageningen, the Netherlands. Electronic address:
This study investigates the impact of maternal gestation diets with varying fiber contents on gene expression and chromatin accessibility in fetuses and piglets fed a low fiber diet post weaning. High-fiber maternal diets, enriched with sugar beet pulp or pea internal fiber, were compared to a low-fiber maternal diet to evaluate their effects on liver and muscle tissues. The findings demonstrate that maternal high-fiber diets significantly alter chromatin accessibility, predicted transcription factor activity and transcriptional landscape in both fetuses and piglets.
View Article and Find Full Text PDFGenome Res
January 2025
Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6.
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!