Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Model-based deep learning methods that combine imaging physics with learned regularization priors have been emerging as powerful tools for parallel MRI acceleration. The main focus of this paper is to determine the utility of the monotone operator learning (MOL) framework in the parallel MRI setting. The MOL algorithm alternates between a gradient descent step using a monotone convolutional neural network (CNN) and a conjugate gradient algorithm to encourage data consistency. The benefits of this approach include similar guarantees as compressive sensing algorithms including uniqueness, convergence, and stability, while being significantly more memory efficient than unrolled methods. We validate the proposed scheme by comparing it with different unrolled algorithms in the context of accelerated parallel MRI for static and dynamic settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087020 | PMC |
http://dx.doi.org/10.1109/isbi53787.2023.10230471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!