Objectives: This study aimed to predict severe coronavirus disease 2019 (COVID-19) progression in patients with increased pneumonia lesions in the early days. A simplified nomogram was developed utilizing artificial intelligence (AI)-based quantified computed tomography (CT).
Methods: From 17 December 2019 to 20 February 2020, a total of 246 patients were confirmed COVID-19 infected in Jingzhou Central Hospital, Hubei Province, China. Of these patients, 93 were mildly ill and had follow-up examinations in 7 days, and 61 of them had enlarged lesions on CT scans. We collected the neutrophil-to-lymphocyte ratio (NLR) and three quantitative CT features from two examinations within 7 days. The three quantitative CT features of pneumonia lesions, including ground-glass opacity volume (GV), semi-consolidation volume (SV), and consolidation volume (CV), were automatically calculated using AI. Additionally, the variation volumes of the lesions were also computed. Finally, a nomogram was developed using a multivariable logistic regression model. To simplify the model, we classified all the lesion volumes based on quartiles and curve fitting results.
Results: Among the 93 patients, 61 patients showed enlarged lesions on CT within 7 days, of whom 19 (31.1%) developed any severe illness. The multivariable logistic regression model included age, NLR on the second time, an increase in lesion volume, and changes in SV and CV in 7 days. The personalized prediction nomogram demonstrated strong discrimination in the sample, with an area under curve (AUC) and the receiver operating characteristic curve (ROC) of 0.961 and a 95% confidence interval (CI) of 0.917-1.000. Decision curve analysis illustrated that a nomogram based on quantitative AI was clinically useful.
Conclusion: The integration of CT quantitative changes, NLR, and age in this model exhibits promising performance in predicting the progression to severe illness in COVID-19 patients with early-stage pneumonia lesions. This comprehensive approach holds the potential to assist clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082326 | PMC |
http://dx.doi.org/10.3389/fmed.2024.1343661 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!