Background: Cisplatin (CP) is commonly used for the initial treatment of lung adenocarcinoma (LUAD). Resistance to CP has long been recognized as a significant obstacle to achieving improved therapeutic outcomes. Nevertheless, the intricate molecular mechanisms underlying the phenomenon remain incompletely understood.
Methods: The present study utilized the University of ALabama at Birmingham CANcer data analysis Portal (UALCAN) and Gene Expression Profiling Interactive Analysis (GEPIA) databases to conduct an analysis of the expression of C-terminal binding protein 2 (CTBP2) in LUAD. The correlation between CTBP2 expression and survival data was investigated by the Kaplan-Meier (K-M) plotter. Subsequently, the roles of CTBP2 in CP resistance were explored by analyzing cell viability, cell apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) in CP-resistant cells (A549/DDP).
Results: Our data indicated that the CTBP2 expression in LUAD exhibited a significant increase compared to the non-malignant tissues. CTBP2 overexpression showed a correlation to poor survival. CTBP2 knockdown significantly enhanced cell sensitivity to CP in A549/DDP cells. The underlying mechanism is related to promoting ROS production and decreasing MMP after CP treatment.
Conclusions: CTBP2 expression has been identified as a novel biomarker for resistance to CP, and its downregulation has been found to enhance sensitivity to CP. Therefore, CTBP2 can serve as a predictor related to CP resistance and a viable therapeutic target for CP resistance in LUAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082667 | PMC |
http://dx.doi.org/10.21037/tcr-23-2135 | DOI Listing |
J Otol
October 2024
The Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
Objective: This study aims to explore the expression patterns of cysteine string protein alpha (CSPα) and cysteine string protein beta (CSPβ) in the mammalian inner ear, with an emphasis on their temporal dynamics during the developmental stages of C57BL/6 mice.
Methods: We utilized immunofluorescence staining to assess the localization and distribution of CSPα and CSPβ within the inner ears of C57BL/6 mice and miniature pigs. Additionally, this method facilitated the investigation of their temporal expression profiles.
Int J Biol Macromol
January 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Zhaoqing Branch Centre of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526238, China; Guangdong Wens Dahuanong Bio-Pharmaceutical Co., Ltd., Xinxing 527400, China. Electronic address:
Virus-host protein interaction is critical for successful completion of viral replication cycles. As the largest nonstructural protein (NSP) of porcine reproductive and respiratory syndrome virus (PRRSV), NSP2 plays multiple and critical roles in viral replication, antiviral immunity, cellular tropism and virulence. An interactome of this protein with host proteins would be instrumental in full understanding of these multifunctional roles.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China. Electronic address:
Background: Acute respiratory distress syndrome (ARDS) is characterized by severe inflammation and significant extracellular matrix (ECM) degradation in the lungs. Our prior research identified the CtBP2-p300-NF-κB (C-terminal-binding protein 2-histone acetyltransferase p300-nuclear factor kappa B) transcriptional complex as critical in ARDS by activating pro-inflammatory cytokine genes.
Methods: An ARDS mouse model was established using intratracheal instillation of lipopolysaccharide (LPS).
Mol Psychiatry
November 2024
Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany.
Acta Otolaryngol
October 2024
Department of Otorhinolaryngology, Peking University Shenzhen Hospital, Shenzhen, China.
Background: Noise-induced cochlear synaptopathy has recently emerged as a focus in hearing research.
Purpose: This study aimed to examine the impact of repeated noise exposure on the quantification and mRNA expression levels of cochlear synapses.
Methods: Measurements were conducted at baseline, 1 day, and 14 days post-exposure to 88 or 97 dB SPL noise (2 h/day for 7 days, frequency range 2-20 kHz).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!