Background: RNA-binding motif protein 39 (RBM39) is a well-known RNA-binding protein involved in tumorigenesis; however, its role in hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to investigate the role of RBM39 in HCC.
Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used to analyze the differential expression of RBM39 in HCC and normal tissues. The prognostic and diagnostic value of RBM39 in HCC was accessed by Kaplan-Meier analysis, Cox regression, and receiver operating characteristic (ROC) curve analyses. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to validate the mRNA and protein expression of RBM39 in HCC. Moreover, gene set enrichment analysis (GSEA) was performed to identify key pathways related to RBM39. The correlation between RBM39 expression and immune cell infiltration was evaluated using a single-sample gene set enrichment analysis (ssGSEA). CCK8 and wound healing assays were performed to investigate the proliferation and migration abilities of HCC cells with RBM39 knockdown.
Results: RBM39 expression was upregulated in the HCC tissues. High RBM39 expression was significantly associated with advanced T stage, histological grade, and pathological stage and predicted poor overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) in HCC patients. The upregulation of RBM39 expression was an independent prognostic factor for OS. Moreover, GSEA enrichment analysis indicated that RBM39 was functionally involved in pathways associated with the cell cycle, DNA replication, the p53 signaling pathway, and primary immunodeficiency. RBM39 expression was associated with infiltration of Th2 cells and dendritic cells (DC). RBM39 knockdown significantly inhibited the proliferation and migration of HCC cells.
Conclusions: These findings suggest that high RBM39 expression is associated with poor prognosis and promotes HCC cell proliferation and migration. Based on these results, RBM39 is a promising prognostic biomarker with functional significance for HCC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082663 | PMC |
http://dx.doi.org/10.21037/tcr-23-2252 | DOI Listing |
Acta Pharmacol Sin
January 2025
Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, The Fourth Affiliated Hospital of Soochow University, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
Gastric cancer is a malignant gastrointestinal disease characterized by high morbidity and mortality rates worldwide. The occurrence and progression of gastric cancer are influenced by various factors, including the abnormal alternative splicing of key genes. Recently, RBM39 has emerged as a tumor biomarker that regulates alternative splicing in several types of cancer.
View Article and Find Full Text PDFBiol Direct
December 2024
Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.
View Article and Find Full Text PDFiScience
December 2024
Department of Urology, Beijing Tongren Hospital, Capital Medical University, Beijing 100176, P.R. China.
Oncogene
December 2024
Guangdong Provincial Key Laboratory of Digestive Cancer Research, Center of Digestive Diseases, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
Osteosarcoma is one of the most common malignant primary bone tumors and lacks effective therapeutic targets. Recent studies have reported that RNA binding proteins (RBPs) could serve as promising therapeutic targets for cancers, as their critical roles in transcriptional regulation and RNA splicing. Nevertheless, the potential of pharmacologically inhibiting RBPs as a therapeutic strategy for patients with osteosarcoma remains unclear.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2024
Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana. Electronic address:
Background & Aims: The RNA-binding motif protein 39 (RBM39) functions as both an RNA-binding protein and a splicing factor in a variety of cancer types. However, the function of RBM39 in cholangiocarcinoma (CCA) remains undefined. In this study, we aimed to investigate the role of RBM39 in CCA and explore its potential as a therapeutic target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!