Background: Radiotherapy or concurrent chemoradiotherapy is the standard treatment for patients with locally advanced or inoperable cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). However, treatment failure for CESC patients treated with radical radiotherapy still occurs due to local recurrence and distant metastasis. The previous prediction models were focused on all CESC patients, neglecting the prognostic differences under different treatment modalities. Therefore, there is a pressing demand to explore novel biomarkers for the prognosis and sensitivity of radiotherapy in CESC patients treated with radical radiotherapy. As a single biomarker has limited effect in stratifying these patients, our objective was to identify radioresponse-related mRNAs to ameliorate forecast of the prognosis for CESC patients treated with radical radiotherapy.

Methods: Sample data on CESC patients treated with radical radiotherapy were obtained from The Cancer Genome Atlas (TCGA) database. We randomly separated these patients into a training and test cohorts using a 1:1 ratio. Differential expression analysis was carried out to identify radioresponse-related mRNA sets that were significantly dysregulated between complete response (CR) and radiographic progressive disease (RPD) groups, and univariate Cox regression analyses, least absolute shrinkage and selection operator (LASSO) method and multivariate Cox regression were performed to identify the radioresponse-related signature in the training cohort. we adopted survival analysis to measure the predictive value of the radioresponse-related signature both in the test and entire cohorts. Moreover, we developed a novel nomogram to predict the overall survival (OS) of CESC patients treated with radical radiotherapy. In addition, immune infiltration analysis and Gene Set Enrichment Analysis (GSEA) were conducted to preliminarily explore possible mechanisms.

Results: This study included a total of 92 CESC patients subjected to radical radiotherapy. We developed and verified a risk score model based on radioresponse-related mRNA. The radioresponse-related mRNA signature and International Federation of Gynecology and Obstetrics (FIGO) stage were served as independent prognostic factors for CESC patients treated with radical radiotherapy. Moreover, a nomogram integrating radioresponse-related mRNA signature with FIGO stage was established to perform better for predicting 1-, 3-, and 5-year survival rates. Mechanically, the low-risk group under the risk score of this model had a better survival status, and the distribution of CD4 T cells was potentially involved in the regulation of radiotherapy response in CESC, leading to a better survival outcome in the low-risk group.

Conclusions: This study presents a new radioresponse-related mRNA signature that shows promising clinical efficacy in predicting the prognosis of CESC patients treated with radical radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082820PMC
http://dx.doi.org/10.21037/tcr-23-1772DOI Listing

Publication Analysis

Top Keywords

cesc patients
36
patients treated
32
treated radical
32
radical radiotherapy
32
radioresponse-related mrna
20
patients
13
identify radioresponse-related
12
mrna signature
12
radiotherapy
11
cesc
11

Similar Publications

Background: Cryptorchidism is the absence of one or both testicles in the scrotum at birth, being a risk factor for testis cancer and infertility. The most effective method to treat cryptorchidism is orchiopexy, followed by human chorionic gonadotropin (hCG) therapy; however, a portion of treated patients do not show a significant improvement in testis volume and vascularization after adjuvant therapy.

Methods: In this study, we generated an in vitro model to predict the patient response to hCG by cultivating and treating primary cells derived from five cryptorchid patients' biopsies of gubernaculum testis, the ligament that connects the testicle to the scrotum.

View Article and Find Full Text PDF

CENPE is a diagnostic and prognostic biomarker for cervical cancer.

Heliyon

December 2024

Department of Medical Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Chaoyang District, Changchun, 130021, China.

Cervical squamous cell carcinoma (CESC) is a common cancer in women. Despite advancements in early diagnosis through high-risk human papillomavirus (HPV) screening, challenges remain in predicting and treating the disease. Hence, the identification of novel biomarkers for prognosis and therapeutic targets is crucial.

View Article and Find Full Text PDF

Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.

View Article and Find Full Text PDF

Background And Aim: Growth factor receptor-bound protein 7 (GRB7) belongs to a group of adaptor proteins characterized by their conserved multidomain structure. These proteins are involved in cellular signaling pathways that regulate cell growth, proliferation, and differentiation. Alterations in GRB7 expression have been linked to multiple human cancers.

View Article and Find Full Text PDF

Background: UCHL5 was initially recognized as a multifunctional molecule. While recent research has highlighted its involvement in tumor malignant biological behaviors, its specific role in promoting tumor cell apoptosis has drawn particular attention. However, the precise relationship between UCHL5 and various tumor types, as well as its influence within the immune microenvironment, remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!