A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Applying geospatial multi-agent system to model various aspects of tuberculosis transmission. | LitMetric

Introduction: The paper presents epidemiological process modeling, with a focus on tuberculosis utilizing multi-agent system.

Material And Methods: This study involves the development of an algorithm that harnesses the potential of artificial intelligence to create a geospatial model that highlights the different pathways of TB transmission. The modeling process itself is characterized by a series of key stages, including initialization of the city, calibration of health parameters, simulation of the working day, propagation of the spread of infection, the evolution of disease trajectories, rigorous statistical calculations and transition to the following day. A comprehensive description of the course of active tuberculosis is presented, following the official hypothesis recommended by the World Health Organization. A comprehensive simulation, illustrating the propagation of tuberculosis in an entirely healthy environment devoid of any preventive or therapeutic measures, is presented. To ascertain the adequacy of the model and its sensitivity to the principal parameters governing the course of tuberculosis, a series of experiments were meticulously conducted, employing three distinct approximations, namely: the basic model, the model incorporating mortality factors, and the comprehensive model, encompassing all relevant aspects.

Conclusions: The model's results exhibit stability and lack of significant fluctuations. The statistical values obtained for infected, latent, and recovered individuals align well with known medical data, confirming the model's adequacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088189PMC
http://dx.doi.org/10.1016/j.nmni.2024.101417DOI Listing

Publication Analysis

Top Keywords

model
6
tuberculosis
5
applying geospatial
4
geospatial multi-agent
4
multi-agent system
4
system model
4
model aspects
4
aspects tuberculosis
4
tuberculosis transmission
4
transmission introduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!