As a sustainable, nontoxic and environmentally friendly cyanide-free gold leaching agent, thiosulfate has been applied to some extent in the field of hydrometallurgy. However, the difficult recovery of gold ions in gold leaching solutions limits further application of thiosulfate gold leaching technology. This study demonstrated the feasibility of gold recovery by sodium dimethyldithiocarbamate (SDD) precipitation and recycling of ammonia and a lixiviant in solution. SDD achieved the purpose of recovering gold by forming granular precipitates with gold ions in solution. It can almost completely recover gold ions in 2.5-17.34 mg/L of gold leaching solution within 1 min at 25 °C, in which a gold recovery capacity of 7.99 kg/t is achieved. The leaching rate of gold ore did not change significantly after recycling the residual ammonia and thiosulfate in the leaching solution after gold recovery by SDD, and its leaching rate basically remained at 81%. The mechanism of SDD recovering Au was determined to involve the ligand exchange of SDD and Au[(SO)]. Moreover, the interaction mechanism between SDD and Au(I) was further validated by density functional theory calculations. Considering its low cost, simple technology, and environmental friendliness, the SDD precipitation process has the potential for large-scale application in gold recovery from thiosulfate gold leaching solutions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11080002PMC
http://dx.doi.org/10.1021/acsomega.4c01941DOI Listing

Publication Analysis

Top Keywords

gold leaching
24
gold recovery
16
gold
15
leaching solution
12
gold ions
12
leaching
9
sodium dimethyldithiocarbamate
8
leaching solutions
8
thiosulfate gold
8
sdd precipitation
8

Similar Publications

Gold(III) Ions Sorption on Amberlite XAD-16 Impregnated with TBP After Leaching Smart Card Chips.

Molecules

January 2025

Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland.

Owing to the intensive development of electrical and electronic equipment, there is an increasing demand for precious metals, which are often used for its production. Due to their scarce supply, it is important to recover them from secondary sources. A promising way to recover precious metals are impregnated resins.

View Article and Find Full Text PDF

Ozone/Thiosulfate-Assisted Leaching of Cu and Au from Old Flotation Tailings.

Molecules

December 2024

Department of Environment and Sustainable Development, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia.

The growing demand for metal production promotes the search for alternative sources and novel modalities in metallurgy. Flotation tailings are an important secondary mineral resource; however, they might pose a potential environmental threat due to containing toxic metals. Therefore, proper leaching reagent selection is required.

View Article and Find Full Text PDF

The eco-friendly treatment of cyanide tailings (CT) using microorganisms is a cost-effective and promising technology. However, this process often generates the secondary pollutants, such as ammonia nitrogen (NH-N), which can adversely impacts the surrounding environment. The accumulation of NH-N is also toxic to cyanide-degrading microorganisms, presenting a significant challenge in achieving simultaneous cyanide degradation and NH₄⁺-N mitigation.

View Article and Find Full Text PDF

The continuous advancement of industry and technology has significantly increased electronic waste, which contributes to the depletion of valuable metal reserves. Therefore, it is crucial to recycle precious metals in electronic waste effectively and sustainably. This study introduces a novel approach by applying a carbazole-phosphazene-based polymer, EBE-06, in a two-stage leaching method for efficient metal extraction.

View Article and Find Full Text PDF

We introduce the fragment-pairwise Local Energy Decomposition (fp-LED) scheme for precise quantification of individual interactions contributing to the binding energy of arbitrary chemical entities, such as protein-ligand binding energies, lattice energies of molecular crystals, or association energies of large biomolecular assemblies. Using fp-LED, we can assess whether the contribution to the binding energy arising from noncovalent interactions between pairs of molecular fragments in any chemical system is attractive or repulsive, and accurately quantify its magnitude at the coupled cluster level - commonly considered as the "gold standard" of computational chemistry. Such insights are crucial for advancing molecular and material design strategies in fields like catalysis and therapeutic development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!