ShapeAXI represents a cutting-edge framework for shape analysis that leverages a multi-view approach, capturing 3D objects from diverse viewpoints and subsequently analyzing them via 2D Convolutional Neural Networks (CNNs). We implement an automatic N-fold cross-validation process and aggregate the results across all folds. This ensures insightful explainability heat-maps for each class across every shape, enhancing interpretability and contributing to a more nuanced understanding of the underlying phenomena. We demonstrate the versatility of ShapeAXI through two targeted classification experiments. The first experiment categorizes condyles into healthy and degenerative states. The second, more intricate experiment, engages with shapes extracted from CBCT scans of cleft patients, efficiently classifying them into four severity classes. This innovative application not only aligns with existing medical research but also opens new avenues for specialized cleft patient analysis, holding considerable promise for both scientific exploration and clinical practice. The rich insights derived from ShapeAXI's explainability images reinforce existing knowledge and provide a platform for fresh discovery in the fields of condyle assessment and cleft patient severity classification. As a versatile and interpretative tool, ShapeAXI sets a new benchmark in 3D object interpretation and classification, and its groundbreaking approach hopes to make significant contributions to research and practical applications across various domains. ShapeAXI is available in our GitHub repository https://github.com/DCBIA-OrthoLab/ShapeAXI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085013PMC
http://dx.doi.org/10.1117/12.3007053DOI Listing

Publication Analysis

Top Keywords

shape analysis
8
cleft patient
8
shapeaxi
5
shapeaxi shape
4
analysis explainability
4
explainability interpretability
4
interpretability shapeaxi
4
shapeaxi represents
4
represents cutting-edge
4
cutting-edge framework
4

Similar Publications

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Riverine flooding is increasing in frequency and intensity, requiring river management agencies to consider new approaches to working with communities on flood mitigation planning. Communication and information sharing between agencies and communities is complex, and mistrust and misinformation arise quickly when communities perceive that they are excluded from planning. Subsequently, riverfront community members create narratives that can be examined as truth regimes-truths created and repeated that indicate how flooding and its causes are understood, represented, and discussed within their communities-to explain why flooding occurs in their area.

View Article and Find Full Text PDF

Introduction: Transgender individuals may face familial and social hostility, leading to distress that significantly affects their well-being. This study aims to understand life course challenges experienced by transgender people since childhood.

Method: Cross-sectional study, including 20 transgender people.

View Article and Find Full Text PDF

Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices.

View Article and Find Full Text PDF

Stroke is a leading cause of disability among adults, and any treatment that improves functional outcome, like higher intensity of rehabilitation therapy, can significantly reduce its financial burden. Clinicians on a stroke rehabilitation ward are expected to track and nationally report on rehabilitation time to contribute to the Sentinel Stroke National Audit Programme (SSNAP), a process that was manual, paper-based, time-consuming and redundant, which in turn impacted on a reduction in clinical time to provide stroke rehabilitation. We aimed to release 20% of clinical time by reducing inefficiencies within their time management and reporting process, ensuring that clinicians had more time available for direct patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!