At present, due to its wide application and relatively low cost, chemotherapy remains a clinically important cancer treatment option; however, a number of chemotherapeutic drugs have important limitations, such as lack of specificity, high toxicity and side effects, and multi-drug resistance. The emergence of nanocarriers has removed numerous clinical application limitations of certain antitumor chemotherapy drugs and has been widely used in the treatment of tumors with nanodrugs. The present study used carbon nanoparticles (CNPs) as a nanocarrier for doxorubicin (DOX) to form the novel nanomedicine delivery system (CNPs@DOX)was demonstrated by UV-vis and fluorescence spectrophotometry, ζ potential and TEM characterization experiments. The results confirmed the successful preparation of CNPs@DOX nanoparticles with a particle size of 96±17 nm, a wide range of absorption and a negatively charged surface. Furthermore, CNPs@DOX produced more reactive oxygen species and induced apoptosis, and thus exhibited higher cytotoxicity than DOX, which is a small molecule anticancer drug without a nanocarrier delivery system.. The present study provides a strategy for the treatment of tumors with nanomedicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11083999 | PMC |
http://dx.doi.org/10.3892/ol.2024.14421 | DOI Listing |
Dalton Trans
January 2025
Karlsruhe Institute of Technology (KIT), Institute for Inorganic Chemistry, Engesserstrasse 15, 76131 Karlsruhe, Germany.
(Eu[PTC])(Eu[TREN-1,2-HOPO]) inorganic-organic hybrid nanoparticles (IOH-NPs) contain Eu, tris[(1-hydroxy-2-oxo-1,2-dihydropyridine-6-carboxamido)ethyl]amine (TREN-1,2-HOPO) and perylene-3,4,9,10-tetracarboxylate (PTC). The IOH-NPs are prepared in water and exhibit a rod-type shape, with a length of 60 nm and a diameter of 5 nm. Particle size and chemical composition are examined by different methods (SEM, DLS, FT-IR, TG, C/H/N analysis).
View Article and Find Full Text PDFNanoscale
January 2025
College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
To enhance production efficiency, curtail costs, and minimize environmental impact, developing simple and sustainable nanozyme synthesis methods has been the focus of relevant research. In this report, graphite-coated CeO nanoparticles (CeO NPs) with multiple defects (Ce defects, oxygen vacancies and carbon defects) were synthesized the culture filtrate of the extremely radioresistant bacterium R12 ( R12). The as-prepared CeO NPs exhibit remarkable oxidase (OXD)-like activity, efficiently catalyzing the oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form oxTMB, even in the absence of HO.
View Article and Find Full Text PDFAnal Chem
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
A novel employment of single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) was developed, where a microextraction (ME) probe is used to sample nanoparticles from a surface and analyze them in a single analytical step. The effects of several parameters on the performance of ME-SP-ICP-MS were investigated, including the flow rate, choice of carrier solution, particle size, and the design of the microextraction probe head itself. The optimized ME-SP-ICP-MS technique was used to compare the extraction efficiency (EE, defined as the ratio of particles measured to particles deposited on the surface) of the commercial probe head to a newly designed SP polyether ether ketone (PEEK) probe head.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Enikolopov Institute of Synthetic Polymer Materials Russian Academy of Sciences (ISPM RAS), Profsoyuznaya St. 70, 117393 Moscow, Russia.
The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of General Physics, Kazan National Research Technical University Named After A.N. Tupolev-KAI, Kazan 420111, Russia.
In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory and non-refractory cathode. It is shown that in the case of a refractory tungsten cathode, almost the same methane conversion rate is observed, leading to similar values in the density of the main methane conversion products (C, C, H) at different values of the discharge current density. However, with an increase in the current density, the evaporation rate of copper atoms from the anode increases, and a jump in the - characteristic is observed, caused by a change in the plasma-forming ion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!