A novel functional allele of controls flowering time in rice.

Mol Breed

State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 China.

Published: May 2024

AI Article Synopsis

  • Rice flowering time is crucial for its geographical distribution and yield, with two early-flowering cultivars, DN413 and XN, used for genetic investigation.
  • A novel allele was identified that affects flowering time, showing that the Hap_E variant leads to earlier flowering compared to Hap_D.
  • The study developed a CAPS marker for breeding, highlighting a new target for improving rice varieties suited for high-latitude regions.

Article Abstract

Unlabelled: Rice flowering time determines its geographical distribution and yield traits. As a short-day plant, rice can grow in the northern long-day conditions due to the functional mutations of many photosensitive genes. In this study, to identify novel genes or alleles that regulate flowering time in high latitude region, two cultivar, Dongnong 413 (DN413) and Yukimochi (XN) showing extreme early flowering were used for investigation. DN413 is around 4.0 days earlier than XN, and both cultivars can be grown in II (2500 ℃-2700 ℃) to III (2300 ℃-2500 ℃) accumulated temperature zones. We found that the two cultivars shared the same genotype of heading date genes, including , , , , . Importantly, a novel allele characterized by a A1146C substitution was identified, which results in the E382D substitution, hereafter the 382 position E is defined as Hap_E and the 382 position D is defined as Hap_D. Association analysis showed that Hap_E is earlier flowering than Hap_D. Subsequently, we construct DN413 Hap_D line by three times back-crossing DN413 with XN, and found the heading date of DN413 Hap_D was 1.7-3.5 days later than DN413. Moreover, Hap_E and Hap_D of Ehd3 were transformed into mutant, respectively, and the flowered later than that by around 4.3 days. Furthermore, we showed functions as a transcriptional suppressor and the substitution of Asp-382 lost the inhibition activity in protoplasts. Finally, a CAPS marker was developed and used for genotyping and marker assistant breeding. Collectively, we discovered a novel functional allele of , which can used as a valuable breeding target.

Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01472-x.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078898PMC
http://dx.doi.org/10.1007/s11032-024-01472-xDOI Listing

Publication Analysis

Top Keywords

flowering time
12
novel functional
8
functional allele
8
382 position
8
position defined
8
dn413 hap_d
8
dn413
6
flowering
5
hap_d
5
novel
4

Similar Publications

Monocarpic plants flower only once and then produce seeds. Many monocarpic plants require a cold treatment known as vernalization before they flower. This requirement delays flowering until the plant senses warm temperatures in the spring.

View Article and Find Full Text PDF

BRASSINAZOLE RESISTANT 1 delays photoperiodic flowering by repressing CONSTANS transcription.

Plant Physiol

January 2025

Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, and College of Life Sciences, Capital Normal University, Beijing 100048, China.

Photoperiodic regulation of flowering time plays a critical role in plant reproductive success and crop yield. In Arabidopsis thaliana, the expression of the CONSTANS (CO) gene is closely regulated by day length and is modulated by both environmental and endogenous cues for precise control over flowering. Our findings reveal that the phytohormone brassinosteroid (BR) pathway represses flowering by inhibiting the expression of both CO and Flowering Locus T (FT).

View Article and Find Full Text PDF

Development of sensitive and rapid immunoassays for Moniliformin (MON) detection based on nanomaterials labeled monoclonal antibodies.

Food Chem

January 2025

The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Moniliformin (MON) is a toxic secondary metabolite from Fusarium species. The natural contamination of MON in cereals and cereal by-products, poses a risk of exposure to MON. However, so far, no immunoassay method has been reported to detect MON in field samples.

View Article and Find Full Text PDF

Background: Future breeding and selection of Cannabis sativa L. for both drug production and industrial purposes require a source of germplasm with wide genetic variation, such as that found in wild relatives and progenitors of highly cultivated plants. Limited directional selection and breeding have occurred in this crop, especially informed by molecular markers.

View Article and Find Full Text PDF

Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!