Introduction: The current study aims to assess the performance of data mining techniques in detecting safety signals for adverse events following immunization (AEFI) using routinely obtained data in China. Four different methods for detecting vaccine safety signals were evaluated.
Methods: The AEFI data from 2011 to 2015 was collected for our study. We analyzed the data using four different methods to detect signals: the proportional reporting ratio (PRR), reporting odds ratio (ROR), Bayesian confidence propagation neural network (BCPNN), and multi-item gamma Poisson shrinker (MGPS). Each method was evaluated at 1-3 thresholds for positivity. To assess the performance of these methods, we used the published signal rates as gold standards to determine the sensitivity and specificity.
Results: The number of identified signals varied from 602 for PRR1 (with a threshold of 1) to 127 for MGPS1. When considering the common reactions as the reference standard, the sensitivity ranged from 0.9% for MGPS1/2 to 38.2% for PRR1/2, and the specificity ranged from 85.2% for PRR1 and ROR1 to 96.7% for MGPS1. When considering the rare reactions as the reference standard, PRR1, PRR2, ROR1, ROR2, and BCPNN exhibited the highest sensitivity (73.3%), while MGPS1 exhibited the highest specificity (96.9%).
Discussion: For common reactions, the sensitivities were modest and the specificities were high. For rare reactions, both the sensitivities and specificities were high. Our study provides valuable insights into the selection of signal detection methods and thresholds for AEFI data in China.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082050 | PMC |
http://dx.doi.org/10.46234/ccdcw2024.066 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125.
The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
Single nanoparticle analysis is crucial for various applications in biology, materials, and energy. However, precisely profiling and monitoring weakly scattering nanoparticles remains challenging. Here, it is demonstrated that deep learning-empowered plasmonic microscopy (Deep-SM) enables precise sizing and collision detection of functional chemical and biological nanoparticles.
View Article and Find Full Text PDFChaos
January 2025
Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
Detecting directional couplings from time series is crucial in understanding complex dynamical systems. Various approaches based on reconstructed state-spaces have been developed for this purpose, including a cross-distance vector measure, which we introduced in our recent work. Here, we devise two new cross-vector measures that utilize ranks and time series estimates instead of distances.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Objectives: To investigate the image quality and diagnostic performance with ultra-low dose dual-layer detector spectral CT (DLSCT) by various reconstruction techniques for evaluation of pulmonary nodules.
Materials And Methods: Between April 2023 and December 2023, patients with suspected pulmonary nodules were prospectively enrolled and underwent regular-dose chest CT (RDCT; 120 kVp/automatic tube current) and ultra-low dose CT (ULDCT; 100 kVp/10 mAs) on a DLSCT scanner. ULDCT was reconstructed with hybrid iterative reconstruction (HIR), electron density map (EDM), and virtual monoenergetic images at 40 keV and 70 keV.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!