Exposure of the Hubble Space Telescope to space in low Earth orbit resulted in numerous hypervelocity impacts by cosmic dust (micrometeoroids) and anthropogenic particles (orbital debris) on the solar arrays and the radiator shield of the Wide Field and Planetary Camera 2, both subsequently returned to Earth. Solar cells preserve residues from smaller cosmic dust (and orbital debris) but give less reliable information from larger particles. Here, we present images and analyses from electron, ion and X-ray fluorescence microscopes for larger impact features (millimetre- to centimetre-scale) on the radiator shield. Validated by laboratory experiments, these allow interpretation of composition, probable origin and likely dimensions of the larger impactors. The majority (~90%) of impacts by grains greater than 50 μm in size were made by micrometeoroids, dominated by magnesium- and iron-rich silicates and iron sulfides, metallic iron-nickel and chromium-rich spinel similar to that in ordinary chondrite meteorites of asteroid origin. Our re-evaluation of the largest impact features shows substantially fewer large orbital debris impacts than reported by earlier authors. Mismatch to the NASA ORDEM and ESA MASTER models of particle populations in orbit may be partly due to model overestimation of orbital debris flux and underestimation of larger micrometeoroid numbers. This article is part of the theme issue 'Dust in the Solar System and beyond'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2023.0194 | DOI Listing |
Waste Manag
December 2024
Cooperative Program for Resources Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
The proliferation of space debris poses a significant challenge in modern space exploration, with potential repercussions for the future space environment and activities. Various research and technological developments have addressed these concerns, including estimating the number of space debris orbiting the Earth and its efficient removal. This paper proposes a novel resource-oriented perspective on space debris and focuses on the composition and resource potential of space debris.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Electronics and Systems Engineering, University of Cadiz, 11519 Puerto Real, Spain.
This article presents an alternative approach to detecting and mapping space debris in low Earth orbit by utilizing commercially available automotive LiDAR sensors mounted on CubeSats. The main objective is to leverage the compact size, low weight, and minimal power consumption of these sensors to create a "Large Cosmic LiDAR" (LCL) system. This LCL system would operate similarly to a giant radar circling the Earth, with strategically positioned LiDAR sensors along the target orbit.
View Article and Find Full Text PDFMethods Mol Biol
October 2024
Protein Production and Structure Core Facility (PTPSP), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
The production and purification of the secreted ectodomain of SARS-CoV-2 spike protein (S protein) were performed by transiently transfecting suspension-adapted Chinese hamster ovary cells (ExpiCHO). The method involved the separate addition of plasmid DNA expressing the S protein and polyethyleneimine to a suspension culture at a density of 5 × 10 cells/mL; and the subsequent addition of dimethyl sulfoxide at 2% (v/v). The transfected ExpiCHO cells were cultivated at 31 °C with agitation by orbital shaking under 5% CO.
View Article and Find Full Text PDFCureus
September 2024
Emergency Medicine, Dr. D. Y. Patil Medical College, Hospital, and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND.
Ultrasonics
January 2025
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China. Electronic address:
Micro-Meteoroid and Orbital Debris pose a significant threat to the safe operation of orbiting spacecraft, potentially leading to mission failure in space exploration. Quantitative characterization of hypervelocity impact (HVI) is crucial to ensure the safety and successful completion of on-orbit missions. Firstly, this study designed a three-layer sandwich structure of polyimide film with orthogonally laid resistive wires, combined with piezoelectric and resistive wire sensors, for the simultaneous acquisition of acoustic emission (AE) signals generated by HVI and measurement of perforation dimensions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!