The analysis of volatile organic compounds (VOCs) present in various biological samples holds immense potential for non-invasive disease diagnostics and metabolic profiling. One of the biological fluids that are suitable for use in clinical practice is urine. Given the limited quantity of VOCs in the urine headspace, it's imperative to enhance their extraction into the gaseous phase and prevent any degradation of VOCs during the thawing process. The study aimed to test several key parameters (incubation time, temperature, and thawing) that can influence urine volatilome and monitor selected VOCs for their stability. The analysis in this study was performed using a BreathSpec® (G.A.S., Dortmund, Germany) device consisting of a gas chromatograph (GC) coupled with an ion mobility spectrometer (IMS). Testing three different temperatures and incubation times yielded a low number of VOCs (9 out of 34) that exhibited statistically significant differences. However, examining three thawing conditions revealed no VOCs with statistically significant changes. Thus, we conclude that urine composition remains relatively stable despite exposure to various thermal stresses.

Download full-text PDF

Source
http://dx.doi.org/10.26402/jpp.2024.2.10DOI Listing

Publication Analysis

Top Keywords

vocs
6
urine
5
optimizing protocol
4
protocol untargeted
4
untargeted profiling
4
profiling urine
4
urine volatiles
4
volatiles gas
4
gas chromatography-ion
4
chromatography-ion mobility
4

Similar Publications

The detection of skeletal remains using human remain detection dogs (HRD) is often reported anecdotally by handlers to be a challenge. Limited studies have been conducted to determine the volatile organic compounds (VOCs) emitted from bones, particularly when there is limited organic matter remaining. This study aimed to determine the VOCs emitted from dry, weathered bones and examine the detection performance of HRD dogs on these bones when used as training aids.

View Article and Find Full Text PDF

This study aimed to explore the effects of different brining times on the sensory, physicochemical properties, and volatile organic compounds (VOCs) of marinated grass carp (MGC). The results showed that different brining time changed the sensory quality, color and texture. The moisture content increased significantly with the extension of brining time, while the salt content, protein content, thiobarbituric acid reactive substances (TBARS), and total volatile basic‑nitrogen (TVB-N) decreased ( 0.

View Article and Find Full Text PDF

Exhaled breath contains trace levels of volatile organic compounds (VOCs) that can reveal information about metabolic processes or pathogens in the body. These molecules can be used for medical diagnosis, but capturing and accurately measuring them is a significant challenge in chemical separations. A highly selective nanoporous sorbent can be used to capture target molecules from a breath sample and preconcentrate them for use in a detector.

View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!