Polarized M2 macrophages induced by glycosylated nano-hydroxyapatites activate bone regeneration in periodontitis therapy.

J Clin Periodontol

Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, People's Republic of China.

Published: August 2024

Aim: To investigate the association between periodontal macrophage polarization states and the alveolar bone levels, and to assess whether glycosylated nano-hydroxyapatites (GHANPs) could improve bone regeneration in periodontitis by inducing macrophage M2 polarization.

Materials And Methods: The change of macrophage polarization state in inflammatory periodontal tissues (with bone loss) was examined using clinical gingival samples. The relationship between macrophage phenotype and bone level in periodontal bone loss and repair was evaluated using a mouse periodontitis model. The effect of GHANPs on macrophage polarization was assessed by the in vitro model of lipopolysaccharide (LPS)-stimulated inflammation. The polarization-related markers were detected by immunofluorescence staining, real-time polymerase chain reaction and enzyme-linked immunosorbent assay analysis. The therapeutic effect of GHANPs on alveolar bone loss was explored in experimental periodontitis by histological staining and micro-CT analysis.

Results: A lower macrophage M2/M1 ratio was observed in periodontitis-affected human gingival tissues. The results of animal experiments demonstrated a positive correlation between a lower Arg-1/iNOS ratio and accelerated alveolar bone loss; also, the proportion of Arg-1-positive macrophages increased during bone repair and regeneration. The administration of GHANPs partially restored M2 macrophage polarization after LPS stimulation. GHANPs increased alveolar bone repair and regeneration in experimental periodontitis induced by ligation, potentially related to their macrophage M2 transition regulation.

Conclusions: The findings of this study indicate that the induction of macrophage M2 polarization can be considered a viable approach for enhancing inflammatory bone repair. Additionally, GHANPs show potential in the clinical treatment of periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcpe.13999DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
20
alveolar bone
16
bone loss
16
bone repair
12
bone
11
macrophage
9
glycosylated nano-hydroxyapatites
8
bone regeneration
8
regeneration periodontitis
8
experimental periodontitis
8

Similar Publications

Investigating the role of intratumoral Streptococcus mitis in gastric cancer progression: insights into tumor microenvironment.

J Transl Med

January 2025

Department of Pathogen Biology, Key Laboratory for Pathogen Infection and Control of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, P.R. China.

Growing evidence implicates that intratumoral microbiota are closely linked to cancer progression; however, research on the role of these microbiota in the development of gastric cancer remains limited. Here, using 16 S rRNA sequencing, tumor tissue proteomics and serum cytokines analysis, we identified enrichment of specific microbial communities within tumors of gastric cancer patients, possibly affecting the tumor microenvironment by immune modulation, metabolic processes, and inflammatory responses. Based on the results of in vivo experiments and intratumoral microbiota analysis, we found that Streptococcus mitis can inhibit gastric cancer progression via suppressing M2 macrophage polarization and infiltration, as well as altering the intratumoral microbial community.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME), particularly immune cell infiltration, programmed cell death (PCD) and stress, has increasingly become a focal point in colorectal cancer (CRC) treatment. Uncovering the intricate crosstalk between these factors can enhance our understanding of CRC, guide therapeutic strategies, and improve patient prognosis.

Methods: We constructed an immune-related cell death and stress (ICDS) prognostic model utilizing machine learning methodologies.

View Article and Find Full Text PDF

Macrophage plasticity is critical for maintaining immune function and developing solid tumors; however, the macrophage polarization mechanism remains incompletely understood. Our findings reveal that Mg entry through distinct plasma membrane channels is critical to macrophage plasticity. Naïve macrophages displayed a previously unidentified Mg dependent current, and TRPM7-like activity, which modulates its survival.

View Article and Find Full Text PDF

TGF-beta plays dual roles in immunity and pathogenesis in leishmaniasis.

Cytokine

January 2025

Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:

Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.

View Article and Find Full Text PDF

Hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN) is a neurodegenerative disease caused by mutations in the gene encoding transthyretin (TTR). Despite amyloid deposition being pathognomonic for diagnosis, this pathology in nervous tissues cannot fully account for nerve degeneration, implying additional pathophysiology for neurodegeneration, which, however, has not yet been fully elucidated. In this study, neuroinflammation in ATTRv-PN was investigated by examining nerve morphometry, the blood-nerve barrier, and macrophage infiltration in the sural nerves of ATTRv-PN patients and the sciatic nerves of a complementary mouse system, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!