AI Article Synopsis

  • Programmed cell death protein-1 (PD-1) is found on various immune cells and its inhibition has improved cancer treatment through monoclonal antibodies (mAbs).
  • Researchers developed anti-PD-1 nanobodies using a method that involves grafting specific regions from an existing mAb into a smaller nanobody to enhance its effectiveness.
  • Site-directed mutagenesis was also employed to create mutations that further increase the binding strength of these nanobodies to PD-1, confirmed through multiple laboratory techniques.

Article Abstract

Programmed cell death protein-1 (PD-1) is a membrane protein expressed on the surface of activated T-cells, B-cells, natural killer cells, dendritic cells, macrophages, and monocytes. Inhibition of the PD-1/PD-L1 interaction by monoclonal antibodies (mAbs) has many therapeutic benefits and has led to a major advance in the treatment of various types of tumors. Due to the large size and immunogenicity of the antibodies (Abs), using small molecules such as nanobodies (nanobodies or VHH) is more appropriate for this purpose. In this research, the complementarity determining regions (CDR) grafting method was used to produce anti-PD-1 nanobody. For producing the grafted anti-PD-1 nanobody, CDRs from the tislelizumab mAb were grafted into the frameworks of a nanobody whose sequence is similar to the tislelizumab mAb. Also, the site-directed mutagenesis method was used to produce two mutated anti-PD-1 nanobodies which increased the affinity of grafted anti-PD-1 nanobodies. Two amino acid substitutions (Tyr97Arg and Tyr102Arg) in the VHH-CDR3 were used to improve grafted nanobody affinity and the binding capacity of the mutated nanobodies. The binding of the anti-PD-1 nanobodies and PD-1 antigen (Ag) was confirmed by Dot blot, western blot, and indirect ELISA analysis. According to the results of these in silico and in vitro studies, the binding between grafted and mutated nanobodies with PD-1 was confirmed. Also, our findings show that site-directed mutagenesis can increase the affinity of nanobodies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-024-01162-1DOI Listing

Publication Analysis

Top Keywords

anti-pd-1 nanobody
12
site-directed mutagenesis
12
anti-pd-1 nanobodies
12
cdr grafting
8
nanobodies
8
method produce
8
grafted anti-pd-1
8
tislelizumab mab
8
mutated nanobodies
8
nanobodies pd-1
8

Similar Publications

Targeting PD-1 T cells with small-format immunocytokines enhances IL-12 antitumor activity.

Mol Ther

January 2025

DNA and RNA Medicine Division, Cima Universidad de Navarra, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdISNA) and CCUN, 31008 Pamplona, Spain. Electronic address:

Immunostimulatory cytokines and immune checkpoint inhibitors hold promise as cancer therapeutics; however, their use is often limited by reduced efficacy and significant toxicity. In this study, we developed small-format immunocytokines (ICKs) based on interleukin-12 (IL-12) and blocking nanobodies (Nbs) targeting mouse and human programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1). Both PD-1- and PD-L1-targeted ICKs demonstrated similar in vitro performance, significantly increasing IL-12 tethering to immune cells and enhancing T cell cytotoxic activity compared with IL-12 alone.

View Article and Find Full Text PDF

There is a critical need to non-invasively assess the PD-L1 expression in tumors as a predictive biomarker for determining the efficacy of anti-PD-1/PD-L1 immunotherapies. Non-invasive imaging modality like positron emission tomography (PET) can be a powerful tool to assess the PD-L1 expression in the whole body including multiple metastases as a patient selection criterion for the anti-PD-1/PD-L1 immunotherapy. In this study, we synthesized B11-nanobody, B11-scFv and B11-diabody fragments from the full-length anti-PD-L1 B11 IgG.

View Article and Find Full Text PDF
Article Synopsis
  • Programmed cell death protein-1 (PD-1) is found on various immune cells and its inhibition has improved cancer treatment through monoclonal antibodies (mAbs).
  • Researchers developed anti-PD-1 nanobodies using a method that involves grafting specific regions from an existing mAb into a smaller nanobody to enhance its effectiveness.
  • Site-directed mutagenesis was also employed to create mutations that further increase the binding strength of these nanobodies to PD-1, confirmed through multiple laboratory techniques.
View Article and Find Full Text PDF

Osteosarcoma (OS) is a primary bone malignancy characterized by an aggressive nature, limited treatment options, low survival rate, and poor patient prognosis. Conditionally replicative adenoviruses (CRAds) armed with immune checkpoint inhibitors hold great potential for enhanced therapeutic efficacy. The present study aims to investigate the anti-tumor efficacy of CAV2-AU-M2, a CAV2-based CRAd armed with an anti-PD-1 single-domain antibody (sdAb), against OS cell lines .

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is a life-threatening disease caused by a novel bunyavirus (SFTSV), mainly transmitted by ticks. With no effective therapies or vaccines available, understanding the disease's mechanisms is crucial. Recent studies found increased expression of programmed cell death-1 (PD-1) on dysfunctional T cells in SFTS patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!