Cell- and antibody-based CD19-directed therapies have demonstrated great potential for treating B-cell non-Hodgkin lymphoma (B-NHL). However, all these approaches suffer from limited response rates and considerable toxicity. Until now, therapy decisions have been routinely based on histopathological CD19 staining of a single lesion at initial diagnosis or relapse, disregarding heterogeneity and temporal alterations in antigen expression. To visualize in vivo CD19 expression noninvasively, we radiolabeled anti-human CD19 monoclonal antibodies with copper-64 (Cu-αCD19) for positron emission tomography (CD19-immunoPET). Cu-αCD19 specifically bound to subcutaneous Daudi xenograft mouse models in vivo. Importantly, Cu-αCD19 did not affect the anti-lymphoma cytotoxicity of CD19 CAR-T cells in vitro. Following our preclinical validation, Cu-αCD19 was injected into four patients with follicular lymphoma, diffuse large B-cell lymphoma or mantle zone lymphoma. We observed varying Cu-αCD19 PET uptake patterns at different lymphoma sites, both within and among patients, correlating with ex vivo immunohistochemical CD19 expression. Moreover, one patient exhibited enhanced uptake in the spleen compared to that in patients with prior B-cell-depleting therapy, indicating that Cu-αCD19 is applicable for identifying B-cell-rich organs. In conclusion, we demonstrated the specific targeting and visualization of CD19 B-NHL in mice and humans by CD19-immunoPET. The intra- and interindividual heterogeneous Cu-αCD19 uptake patterns of lymphoma lesions indicate variability in CD19 expression, suggesting the potential of CD19-immunoPET as a novel tool to guide CD19-directed therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089670 | PMC |
http://dx.doi.org/10.1186/s40364-024-00595-9 | DOI Listing |
J Clin Immunol
January 2025
Population Health Sciences Institute, Newcastle University, Newcastle-Upon-Tyne, UK.
Receptor Interacting Serine/Threonine Kinase 1 (RIPK1) is widely expressed and integral to inflammatory and cell death responses. Autosomal recessive RIPK1-deficiency, due to biallelic loss of function mutations in RIPK1, is a rare inborn error of immunity (IEI) resulting in uncontrolled necroptosis, apoptosis and inflammation. Although hematopoietic stem cell transplantation (HSCT) has been suggested as a potential curative therapy, the extent to which disease may be driven by extra-hematopoietic effects of RIPK1-deficiency, which are non-amenable to HSCT, is not clear.
View Article and Find Full Text PDFBr J Haematol
January 2025
Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France.
Lymphomas of T-follicular helper origin (T-follicular helper-cell lymphoma [TFHL]) are often accompanied by an expansion of B-immunoblasts, occasionally with Hodgkin/Reed-Sternberg-like (HRS-like) cells, making the differential diagnosis with classic Hodgkin lymphoma (CHL) difficult. We compared the morphologic, immunophenotypic, and molecular features of 15 TFHL and 12 CHL samples and discussed 4 challenging cases of uncertain diagnosis. Compared with CHL, TFHL disclosed more frequent sparing of subcortical sinuses, high-endothelium venule proliferation, dendritic cell meshwork expansion, T-cell atypia, and aberrant T-cell immunophenotype.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland.
The tumor immune microenvironment (TiME) of human central nervous system (CNS) tumors remains to be comprehensively deciphered. Here, we employed flow cytometry and RNA sequencing analysis for a deep data-driven dissection of a diverse TiME and to uncover noncanonical immune cell types in human CNS tumors by using seven tumors from five patients. Myeloid subsets comprised classical microglia, monocyte-derived macrophages, neutrophils, and two noncanonical myeloid subsets: CD3 myeloids and CD19 myeloids.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, Fifth Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
The deregulation of immune responses is what causes food allergy (FA) to occur. FA's cause is still unknown. The goal of this study is to investigate the mechanism how the impaired production of IL-10 occurs in peripheral naive B cells of patients with FA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!