Background: The impact of global overconsumption of simple sugars on bone health, which peaks in adolescence/early adulthood and correlates with osteoporosis (OP) and fracture risk decades, is unclear. Mesenchymal stromal/stem cells (MSCs) are the progenitors of osteoblasts/bone-forming cells, and known to decrease their osteogenic differentiation capacity with age. Alarmingly, while there is correlative evidence that adolescents consuming greatest amounts of simple sugars have the lowest bone mass, there is no mechanistic understanding on the causality of this correlation.
Methods: Bioinformatics analyses for energetics pathways involved during MSC differentiation using human cell information was performed. In vitro dissection of normal versus high glucose (HG) conditions on osteo-/adipo-lineage commitment and mitochondrial function was assessed using multi-sources of non-senescent human and murine MSCs; for in vivo validation, young mice was fed normal or HG-added water with subsequent analyses of bone marrow CD45 MSCs.
Results: Bioinformatics analyses revealed mitochondrial and glucose-related metabolic pathways as integral to MSC osteo-/adipo-lineage commitment. Functionally, in vitro HG alone without differentiation induction decreased both MSC mitochondrial activity and osteogenesis while enhancing adipogenesis by 8 h' time due to depletion of nicotinamide adenine dinucleotide (NAD), a vital mitochondrial co-enzyme and co-factor to Sirtuin (SIRT) 1, a longevity gene also involved in osteogenesis. In vivo, HG intake in young mice depleted MSC NAD, with oral NAD precursor supplementation rapidly reversing both mitochondrial decline and osteo-/adipo-commitment in a SIRT1-dependent fashion within 1 ~ 5 days.
Conclusions: We found a surprisingly rapid impact of excessive glucose, a single dietary factor, on MSC SIRT1 function and osteogenesis in youthful settings, and the crucial role of NAD-a single molecule-on both MSC mitochondrial function and lineage commitment. These findings have strong implications on future global OP and disability risks in light of current worldwide overconsumption of simple sugars.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11089752 | PMC |
http://dx.doi.org/10.1186/s12929-024-01039-0 | DOI Listing |
Gut Microbes
December 2025
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects.
View Article and Find Full Text PDFAnn Agric Environ Med
September 2024
Higher School of Health Promotion, Kraków, Poland.
Introduction And Objective: Conditions resulting from diseases of the brain-gut axis and gum-gut axis show many mutual, often bi-directional interrelationships. The accompanying quantitative and/or qualitative disorders of intestinal microflora may be effectively regulated by implementation of a properly adjusted diet therapy. The aim of the study is to investigate whether there is a relationship between small intestinal bacterial overgrowth (SIBO), and irritable bowel syndrome (IBS), and non-specific inflammatory bowel diseases (IBD), as well as indications for the mode of nutrition.
View Article and Find Full Text PDFSci Transl Med
January 2025
Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Elevated glucagon concentrations have been reported in patients with type 2 diabetes (T2D). A critical role for α cell-intrinsic mechanisms in regulating glucagon secretion was previously established through genetic manipulation of the glycolytic enzyme glucokinase (GCK) in mice. Genetic variation at the glucose-6-phosphatase catalytic subunit 2 () locus, encoding an enzyme that opposes GCK, has been reproducibly associated with fasting blood glucose and hemoglobin A1c.
View Article and Find Full Text PDFAdv Gerontol
January 2025
Saint-Petersburg Institute of Bioregulation and Gerontology, 3 Dynamo av., St. Petersburg 197119, Russian Federation, e-mail:
One of the positive aspects of the implementation of laboratory information systems (LIS) in a medical organization, according to the plan of the Federal project of the Ministry of Health of the Russian Federation to create a unified digital circuit in healthcare, is the emergence of the ability to download large amounts of laboratory research data and analyze them. The purpose of the work is to assess the possibility of a unified digital circuit in providing operational monitoring of carbohydrate metabolism in middle-aged, elderly and senile people in the context of COVID-19. The materials used are the primary data of laboratory research results from the LIS «Ariadna.
View Article and Find Full Text PDFGiven the heightened risk of diabetes-related cardiovascular events associated with inactivity, this study investigates the molecular mechanisms of vascular damage in streptozotocin (STZ)-induced diabetic rats. The aim is to elucidate the impact of different exercises (interval and continuous training) and metformin on biochemical parameters, aortic injury, oxidative stress, and inflammation to provide insights into potential therapeutic interventions for diabetes-associated vascular complications. Male Wistar rats were administered a single dose of STZ (60 mg/kg) to induce diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!