Background: Three-dimensional (3D) printing is increasingly used to fabricate dental restorations due to its enhanced precision, consistency and time and cost-saving advantages. The properties of 3D-printed resin materials can be influenced by the chosen printing orientation which can impact the mechanical characteristics of the final products.
Purpose: The objective of this study was to evaluate the influence of printing orientation and artificial ageing on the Martens hardness (HM) and indentation modulus (E) of 3D-printed definitive and temporary dental restorative resins.
Methods: Disk specimens (20 mm diameter × 2 mm height) were additively manufactured in three printing orientations (0°, 45°, 90°) using five 3D-printable resins: VarseoSmile Crownplus (VCP), Crowntec (CT), Nextdent C&B MFH (ND), Dima C&B temp (DT), and GC temp print (GC). The specimens were printed using a DLP 3D-printer (ASIGA MAX UV), while LavaTM Ultimate (LU) and Telio CAD (TC) served as milled control materials. Martens hardness (HM) and indentation modulus (E) were tested both before and after storage in distilled water and artificial saliva for 1, 30, and 90 days at 37 °C.
Results: 90° printed specimens exhibited higher HM than the other orientations at certain time points, but no significant differences were observed in HM and E between orientations for all 3D-printed materials after 90 days of ageing in both aging media. LU milled control material exhibited the highest HM and E among the tested materials, while TC, the other milled control, showed similar values to the 3D printed resins. CT and VCP (definitive resins) and ND displayed higher Martens parameters compared to DT and GC (temporary resins). The hardness of the 3D-printed materials was significantly impacted by artificial ageing compared to the controls, with ND having the least hardness reduction percentage amongst all 3D-printed materials. The hardness reduction percentage in distilled water and artificial saliva was similar for all materials except for TC, where higher reduction was noted in artificial saliva.
Significance: The used 3D printed resins cannot yet be considered viable alternatives to milled materials intended for definitive restorations but are preferable for use as temporary restorations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2024.05.005 | DOI Listing |
Trends Biotechnol
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, People's Republic of China; School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China. Electronic address:
Replicating the contractile function of arterial tissues in vitro requires precise control of cell alignment within 3D structures, a challenge that existing bioprinting techniques struggle to meet. In this study, we introduce the voxel-based embedded construction for tailored orientational replication (VECTOR) method, a voxel-based approach that controls cellular orientation and collective behavior within bioprinted filaments. By fine-tuning voxel vector magnitude and using an omnidirectional printing trajectory, we achieve structural mimicry at both the macroscale and the cellular alignment level.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain.
This work investigates the sustainable reuse of expanded polystyrene (EPS) waste through a multi-cycle physical recycling process involving dissolution in acetone and subsequent manufacturing via Direct Ink Write (DIW) 3D printing and casting. Morphology and mechanical properties were evaluated as a function of the manufacturing technique and number of dissolution cycles. Morphological analysis revealed that casted specimens better replicated the target geometry, while voids in 3D-printed specimens aligned with the printing direction due to rapid solvent evaporation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Autonomous Vehicle System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
Among 3D printing technologies, fused filament fabrication (FFF) is a fast, simple, and low-cost technology that is being explored in a variety of industries. FFF produces composites using thermoplastic filaments, limiting the applicability of welding. Therefore, mechanical fastening is required to join FFF composites with metals or dissimilar materials.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Metamagnetics Inc., Marlborough, MA 01581, USA.
This paper presents a novel foldable S-band microstrip patch antenna array operating in the 2.4-2.45 GHz band.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Chair of Structural Mechanics, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
The adaptation of 3D printing techniques within the construction industry has opened new possibilities for designing and constructing cementitious materials efficiently and flexibly. The layered nature of extrusion-based concrete printing introduces challenges, such as interlayer weaknesses, that compromise structural integrity and mechanical performance. This experimental study investigates the influence of interlayer orientation and the presence of cold joints (CJ) on mechanical properties, such as stiffness and strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!