Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mulch films were fabricated from polylactic acid (PLA) with cellulose nanocrystals (PNC) extracted from pineapple leaves. The PNC was modified by incorporating 4 wt% triethoxyvinylsilane (TEVS), designated as 4PNC, to enhance its interaction with PLA. The films incorporated varying concentrations of PNC (1, 2, 4, and 8 wt%). The results indicated that higher PNC concentrations increased the water vapor permeability (WVP) and biodegradability of the composite films, while reducing light transmission. Films containing 4PNC, particularly at 4 wt% (PLA/4PNC-4), exhibited an 11.18 % increase in elongation at break compared to neat PLA films. Moreover, these films showed reduced light transmission, correlating with decreased weed growth, reduced WVP, and enhanced barrier properties, indicative of improved soil moisture retention. Additionally, PLA films with 4PNC demonstrated greater thermal degradation stability than those with unmodified PNC, suggesting enhanced heat resistance. However, there was no significant difference in aerobic biodegradation between the PLA films with PNC and those with 4PNC. This study confirms that TEVS-modified cellulose significantly enhances the properties of bio-composite films, making them more suitable for mulch film applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.132299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!