Nanoencapsulation of Oliveria decumbens Vent./basil essential oils into gum arabic/maltodextrin: Improved in vitro bioaccessibility and minced beef meat safety.

Int J Biol Macromol

Department of Food Science and Technology, Islamic Azad University, Damghan Branch, Damghan, Iran; Department of Food Engineering, Inonu University, 44280 Malatya, Turkey. Electronic address:

Published: June 2024

This study investigated the functional properties of freeze-dried encapsulated Oliveria decumbens Vent. (OEO) and basil (BEO) essential oils (EOs) in maltodextrin/gum arabic coating solution (1:1). Nanoencapsulated EOs were evaluated in terms of size, polydispersity, encapsulation efficiency, morphology, antioxidant, and antibacterial activities (AOA and ABA), and sensory characteristics in vitro compared to the control. The TPC (30.43 to 32.41 mg GAE/g DW) and AOA (25.97 to 26.42 %) were determined in free and encapsulated OEO, and ABA was observed, which were higher than BEO. Both free and encapsulated OEO and BEO demonstrated significant ABA against various Gram-positive and Gram-negative bacteria, with MIC values ranging from 0.25 to 1.25 mg/mL and MBC values ranging from 1.00 to 3.00 mg/mL. In minced meat, both free and encapsulated oils effectively reduced bacterial counts during refrigerated storage, with log reductions ranging from 1.00 to 6.48 CFU/g. Additionally, the pH and thiobarbituric acid values in meat samples were better maintained with the addition of oils. Sensory analysis showed that the encapsulated oils effectively masked their natural flavor and aroma, making them suitable for incorporation into food. Finally, OEO and BEO nanocapsules can improve the standard and safety of meat products due to their antioxidant and antibacterial properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.132288DOI Listing

Publication Analysis

Top Keywords

free encapsulated
12
oliveria decumbens
8
essential oils
8
antioxidant antibacterial
8
encapsulated oeo
8
oeo beo
8
values ranging
8
ranging 100
8
encapsulated oils
8
oils effectively
8

Similar Publications

Propionate-functionalized chitosan hydrogel nanoparticles for effective oral delivery of insulin.

Int J Biol Macromol

December 2024

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China. Electronic address:

Oral delivery of macromolecular drugs is often hampered by the harsh gastrointestinal environment, which makes the drugs have poor bioavailability. Insulin, the most used drug for diabetes, also faces the same challenge for oral administration. Hence, we decorated microbial metabolite propionate on chitosan (CS) to fabricate insulin-loaded propionate-modified CS hydrogel nanoparticles (IN-CS/PA HNPs).

View Article and Find Full Text PDF

Potassium-iodine batteries show great promise as alternatives for next-generation battery technology, owing to their high power density and environmental sustainability. Nevertheless, they suffer from polyiodide dissolution and the multistep electrode fabrication process, which leads to severe performance degradation and limitations in mass-market adoption. Herein, we report a simple "solution-adsorption" strategy for scale-up production of TiC(OH)-wrapped carbon nanotube paper (CNP), as an economic host for strengthening the iodine encapsulation.

View Article and Find Full Text PDF

Adding plant extracts to sausage and other meat products is very important to improve their quality, safety, and durability. The aim of this study was to evaluate the microbiological properties of beef sausage enriched with roselle ( L.) sepal extract.

View Article and Find Full Text PDF

Gum arabic-stabilized emulsion systems: Underlying mechanisms for enhancing storage and digestion stability of curcumin.

Int J Biol Macromol

December 2024

College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China. Electronic address:

Although the benefits of gum arabic (GA) in developing emulsion systems are well known, the mechanism underlying its stability-enhancing effect of GA in emulsion systems stabilized with curcumin remains unclear. This study used GA-stabilized emulsion system, containing 10 wt% medium-chain triglycerides and 0.1 % curcumin.

View Article and Find Full Text PDF

Glucose-dependent insulin delivery systems have been recognized as a promising approach for controlling blood sugar levels in individuals with diabetes mellitus (DM). Recently, titanium dioxide nanoparticles have garnered huge attention in scientific research for their small size and effective drug delivery capabilities. In this study, we developed alizarin (AL)-capped phenylboronic acid (PBA)-functionalized titanium dioxide nanoparticles (TiO) for glucose-sensitive insulin delivery (TiO-PBA-INS-AL) aiming to manage both blood sugar levels and its associated organ pathology in DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!