The effective removal of micropollutants by water treatment technologies remains a significant challenge. Herein, we develop a CoFe layered double hydroxide (CoFeLDH) catalytic membrane for peroxymonosulfate (PMS) activation to achieve efficient micropollutant removal with improved mass transfer rate and reaction kinetics. This study found that the CoFeLDH membrane/PMS system achieved an impressive above 98% degradation of the probe chemical ranitidine at 0.1 mM of PMS including five more micropollutants (Sulfamethoxazole, Ciprofloxacin, Carbamazepine, Acetaminophen and Bisphenol A) at satisfactory level (above 80%). Moreover, significant improvements in water flux and antifouling properties were observed, marking the membrane as a specific advancement in the removal of membrane fouling in water purification technology. The membrane demonstrated consistent degradation efficiency for several micropollutants and across a range of pH (4-9) as well as different anionic environments, thereby showing it suitability for scale-up application. The key role of reactive species such as SO, and O - radicals in the degradation process was elucidated. This is followed by the confirmation of the occurrence of redox cycling between Co and Fe, and the presence of CoOH that promotes PMS activation. Over the ten cycles, the membrane could be operated with a flux recovery of up to 99.8% and maintained efficient performance over 24 h continuous operation. Finally, the efficiency in degrading micropollutants, coupled with reduced metal leaching, makes the CoFeLDH membrane as a promising technology for application in water treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142318 | DOI Listing |
BMC Plant Biol
December 2024
Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus Universitario de Rabanales, Ed. C6, Planta Baja, Córdoba, 14071, Spain.
The increase in the global population and industrial activities has led to an extensive use of water, the release of wastewater, and overall contamination of the environment. To address these issues, efficient treatment methods have been developed to decrease wastewater nutrient content and contaminants. Microalgae are a promising tool as a sustainable alternative to traditional wastewater treatment.
View Article and Find Full Text PDFBMC Microbiol
December 2024
School of Environment and Resource, Xichang University, Xichang, 615000, China.
The extensive mining of bastnasite (CeFCO) has caused pollution of lanthanum (La), cerium (Ce), and fuorine (F) in the surrounding farmland soil, severely threatening the safety of the soil ecosystem. However, the interaction effects of various chemical fractions of La, Ce, and F on the composition of microbial communities are unclear. In our study, high-throughput sequencing was performed based on the pot experiments of four types of combined pollution soils, i.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Rd., Tianhe DistrictGuangzhou 510640, China.
MCM-41, a mesoporous material with a high surface area and tunable pore size, shows great potential for water vapor adsorption. However, due to its large pore size, the effective adsorption capacity at medium to low relative partial pressures is limited in adsorption chiller applications. In this work, MCM-41 was successfully synthesized at room temperature using cetyltrimethylammonium bromide (CTAB) as a templating agent.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Pharmacognosy Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
Contamination of water by heavy toxic metal ions such as (e.g., Cr, Mn, Ni, Cu, Zn, As Pb, Cd, and Ag) can lead to serious environmental and human health problems because of their acute and chronic toxicity to the biological system.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
EPHE-PSL, Sorbonne Université, CNRS, UMR 7619 METIS, 75005, Paris, France.
Freshwater environments are biodiversity hotspots under multiple pressures, including pesticide exposure. S-metolachlor, a widely used herbicide, can induce genotoxic, cytotoxic and physiological effects in captive fish, but we have a limited understanding of the effects of exposure to S-metolachlor in free-living vertebrates. We carried out an original field experiment using integrative approaches across biological levels and temporal scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!