GOLPH3 has been identified as an oncoprotein, playing a crucial role on progression and chemoresistancein of colon adenocarcinoma (COAD). However, it is still unclear the regulation of GOLPH3 expression at protein level. We discovered ubiquitin-specific proteases 6 (USP6) directly regulated the deubiquitination of the GOLPH3 protein and enhanced its stability in COAD. Overexpression of USP6 promoted COAD cell viability, inhibited apoptosis, and accelerated the growth of transplanted tumors growth in vitro and in vivo by deubiquitinating GOLPH3. Additionally, circCYFIP2 showed high expression levels in DDP-resistant colon cancer cells, promoting the cell proliferation. Mechanically, circCYFIP2 binds to both GOLPH3 protein and USP6, strengthening the interaction between GOLPH3 and USP6, and consequently induced DDP resistance in vitro and in vivo. In conclusion, USP6 operates as a deubiquitinase, targeting the GOLPH3 protein in COAD and enhancing its stability. Meanwhile, circCYFIP2 is crucial for the deubiquitination of GOLPH3 protein mediated by USP6 and acts as a scaffold to confer platinum resistance. The discovery of circCYFIP2/USP6/GOLPH3 pathway offers a potential target for overcoming chemoresistance in COAD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2024.116274DOI Listing

Publication Analysis

Top Keywords

golph3 protein
16
golph3
9
platinum resistance
8
colon cancer
8
deubiquitination golph3
8
vitro vivo
8
usp6
7
coad
5
protein
5
usp6 circcyfip2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!