Assessing agricultural greenhouse gas emission mitigation by scaling up farm size: An empirical analysis based on rural household survey data.

Sci Total Environ

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.

Published: July 2024

AI Article Synopsis

  • Agriculture significantly contributes to greenhouse gas emissions, and this study investigates how farm size influences those emissions using data from over 20,000 rural households in China between 2009 and 2016.
  • The research calculated emissions of CO, CH, and NO through life-cycle analysis and examined the relationship between farm size and emissions intensity using a fixed effect model.
  • Findings reveal that a 1% increase in farm size results in a 0.245% reduction in emissions intensity, primarily by decreasing non-fixed inputs and increasing fixed investment, offering insights for policymakers aiming for carbon neutrality by 2060 in China.

Article Abstract

Agriculture is a major contributor to greenhouse gas (GHG) emissions. Farm size affects agricultural production inputs and thus has impacts on agricultural GHG emissions. However, the effects and mechanisms behind this are still unclear. In this paper, we identified the effects and mechanisms of farm size on agricultural GHG emissions, based on survey data about over 20,000 rural households in China from 2009 to 2016. Firstly, we calculated the agricultural CO, CH, and NO emissions using the life-cycle analysis (LCA). Secondly, the impacts of farm size on GHG emissions intensity were explored with a fixed effect model, based on the long-term rural household survey data. Finally, the mechanisms were tested by the mediation effect model. The results showed that a 1 % increase in farm size, on average, could reduce the GHG emissions intensity of rural households by 0.245 % from 2009 to 2016. The mechanism analysis showed that the larger farm size reduced GHG emissions intensity mainly by reducing the non-fixed input intensity and raising fixed input investment. By identifying the impacts and mechanisms of farm size on agricultural GHG emissions, this paper aims to provide insights for policymakers to achieve China's goal of reaching carbon neutrality by 2060.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173077DOI Listing

Publication Analysis

Top Keywords

farm size
28
ghg emissions
28
survey data
12
size agricultural
12
agricultural ghg
12
emissions intensity
12
greenhouse gas
8
rural household
8
household survey
8
emissions
8

Similar Publications

Genetic insights into the first detection of Paracoccus marginatus (Hemiptera: Pseudococcidae) in Australia.

J Insect Sci

January 2025

Biosecurity and Animal Welfare, Department of Agriculture and Fisheries, Berrimah Farm Science Precinct, Darwin, Northern Territory 0810, Australia.

Species spread in a new environment is often associated with founders' effect, and reduced effective population size and genetic diversity. However, reduced genetic diversity does not necessarily translate to low establishment and spread potential. Paracoccus marginatus Williams and Granara de Willink is a polyphagous pest that has invaded 4 continents in around 34 years.

View Article and Find Full Text PDF

Investigating BoLA Class II DRB3*009:02 carrying cattle in Japan.

Vet Anim Sci

March 2025

Veterinary Virology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi Bunkyodai, Ebetsu, Hokkaido, 0698501, Japan.

Enzootic bovine leukosis (EBL) is a malignant lymphoma of cattle that is mainly caused by bovine leukemia virus (BLV) infection. In this study, PCR-RFLP was used to investigate the frequency of the DRB3*009:02 allele in several farms with different herd management practices in Japan. A total of 742 Holsteins (384) and Japanese Blacks (230) were used as the sample size for the study, which was larger than the number of cattle in the study area with a confidence level of 95 % and a margin of error of 8.

View Article and Find Full Text PDF

Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella.

Microb Pathog

January 2025

Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.

View Article and Find Full Text PDF

Spatial and Temporal Variability Management for All Farmers: A Cell-Size Approach to Enhance Coffee Yields and Optimize Inputs.

Plants (Basel)

January 2025

Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil.

Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results.

View Article and Find Full Text PDF

Postharvest Practices and Farmers' Knowledge in Managing Maize Pests in the Eastern Cape Province, South Africa.

Insects

January 2025

Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha 5117, South Africa.

This study aims to establish the pest management approach for pests of stored maize and determine the current control practices. Semi-structured questionnaires were administered to 77 smallholder farmers from 16 villages at King Sabata Dalindyebo local municipality in the Eastern Cape Province of South Africa. The results revealed that about 50% of the farmers had a formal education, the average farm size was 1 hectare, and they were predominantly cultivating yellow maize.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!