Cetaceans and pinnipeds are lineages of mammals that have independently returned to the aquatic environment, acquiring varying degrees of dependence on it while sharing adaptations for underwater living. Here, we focused on one critical adaptation from both groups, their ability to withstand the ischemia and reperfusion experienced during apnea diving, which can lead to the production of reactive oxygen species (ROS) and subsequent oxidative damage. Previous studies have shown that cetaceans and pinnipeds possess efficient antioxidant enzymes that protect against ROS. In this study, we investigated the molecular evolution of key antioxidant enzyme genes (CAT, GPX3, GSR, PRDX1, PRDX3, and SOD1) and the ROS-producing gene XDH, in cetaceans and pinnipeds lineages. We used the ratio of non-synonymous (dN) to synonymous (dS) substitutions as a measure to identify signatures of adaptive molecular evolution in these genes within and between the two lineages. Additionally, we performed protein modeling and variant impact analyzes to assess the functional consequences of observed mutations. Our findings revealed distinct selective regimes between aquatic and terrestrial mammals in five of the examined genes, including divergences within cetacean and pinniped lineages, between ancestral and recent lineages and between crowns groups. We identified specific sites under positive selection unique to Cetacea and Pinnipedia, with one site showing evidence of convergent evolution in species known for their long and deep-diving capacities. Notably, many sites under adaptive selection exhibited radical changes in amino acid properties, with some being damaging mutations in human variations, but with no apparent detrimental impacts on aquatic mammals. In conclusion, our study provides insights into the adaptive changes that have occurred in the antioxidant systems of aquatic mammals throughout their evolutionary history. We observed both distinctive features within each group of Cetacea and Pinnipedia and instances of convergence. These findings highlight the dynamic nature of the antioxidant system in response to challenges of the aquatic environment and provide a foundation for further investigations into the molecular mechanisms underlying these adaptations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00239-024-10170-3 | DOI Listing |
Mol Biol Evol
December 2024
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China.
Marine mammals have evolved unihemispheric slow wave sleep (USWS), a unique state during which one cerebral hemisphere sleeps while the other remains awake, to mitigate the fundamental conflict between sleep and wakefulness. However, the underlying mechanisms remain largely unclear. Here, we use a comparative phylogenetic approach to analyze genes associated with light-dependent circadian mechanisms, aiming to reconstruct the evolution of the circadian rhythm pathway in mammals and to identify adaptively changed components likely to have contributed to the development of USWS.
View Article and Find Full Text PDFInfect Genet Evol
December 2024
Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China. Electronic address:
The prevalence and evolution of foamy viruses (FVs) have become the focus of research because of the risk of new zoonotic diseases. FVs have been isolated from various mammals and exhibit long-term co-speciation with their hosts. They also appear to be mild and nonpathogenic to their hosts.
View Article and Find Full Text PDFDis Aquat Organ
November 2024
Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia.
bioRxiv
November 2024
Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
The epithelial sodium channel (ENaC) plays a key role in osmoregulation in tetrapod vertebrates and is a candidate receptor for salt taste sensation. There are four ENaC subunits (α, β, γ, δ) which form αβγ- or δβγ ENaCs. While αβγ-ENaC is a 'maintenance protein' controlling sodium and potassium homeostasis, δβγ-ENaC might represent a 'stress protein' monitoring high sodium concentrations.
View Article and Find Full Text PDFNeuroinformatics
October 2024
Laboratório de Biologia Teórica e Matemática Experimental (MetaBIO), Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-909, Brazil.
Brain reconstruction, specially of the cerebral cortex, is a challenging task and even more so when it comes to highly gyrified brained animals. Here, we present Stitcher, a novel tool capable of generating such surfaces utilizing MRI data and manual segmentation. Stitcher makes a triangulation between consecutive brain slice segmentations by recursively adding edges that minimize the total length and simultaneously avoid self-intersection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!