Ankylosing spondylitis (AS) is a rheumatic disease that causes inflammation and bone formation in the spine. Despite significant advances in treatment, adverse side effects have triggered research into natural compounds. Epimedium (EP) is a traditional Chinese herb with a variety of pharmacological activities, including antirheumatic, anti-inflammatory, and immunomodulatory activities; however, its direct effects on AS treatment and the underlying molecular mechanisms have not been systematically studied. Thus, here, we used network pharmacology, molecular docking, and molecular dynamics simulations to explore the targets of EP for treating AS. We constructed an interaction network to elucidate the complex relationship between EP and AS. Sixteen active ingredients in EP were screened; 80 potential targets were identified. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone, anhydroicaritin, and luteolin were the core components and TNF, IL-6, IL-1β, MMP9, and PTGS2 were the core targets. The GO and KEGG analyses indicated that EP may modulate multiple biological processes and pathways, including the AGE-RAGE, TNF, NF-κB/MAPK, and TLR signaling pathways, for AS treatment. Molecular docking and molecular dynamics simulations showed good affinity between the active components and core targets of EP, with stable binding within 100 nanoseconds. In particular, 8-(3-methylbut-2-enyl)-2-phenylchromone possessed the highest free energy of binding to PTGS2 and TNF (-115.575 and - 87.676 kcal/mol, respectively). Thus, EP may affect AS through multiple pathways, including the alleviation of inflammation, oxidative stress, and immune responses. In summary, we identified the active components and potential targets of EP, highlighting new strategies for the further experimental validation and exploration of lead compounds for treating AS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-024-10877-xDOI Listing

Publication Analysis

Top Keywords

molecular docking
12
docking molecular
12
molecular dynamics
12
dynamics simulations
12
ankylosing spondylitis
8
network pharmacology
8
pharmacology molecular
8
potential targets
8
core targets
8
pathways including
8

Similar Publications

The study was conducted to detect the occurrence and phenotypic resistance pattern of ESBL-producing Enterobacteriaceae in livestock using docking based analysis to reveal the classes of antibiotics against which ESBL-producers are active. Rectal swabs from healthy cattle (n=100), goats (n=88), pigs (n=66) were collected from backyard farms in Andaman and Nicober island (India). In total, 304 isolates comprising E.

View Article and Find Full Text PDF

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).

View Article and Find Full Text PDF

Chemoprevention is one of the accessible strategies for preventing, delaying or reversing cancer processing utilizing chemical intervention of carcinogenesis. NAD(P)H quinone oxidoreductase 1 (NQO1) is a xenobiotic metabolizing cytosolic enzyme/protein with important functional properties towards oxidation stress, supporting its ability in detoxification/chemoprotective role. A set of 3,5-diylidene-4-piperidones (as curcumin mimics) bearing alkyl sulfonyl group were synthesized with potential NQO1 induction properties.

View Article and Find Full Text PDF

Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study first established a model of Y. ruckeri-induced intestinal inflammation in channel catfish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!