Advancements in clinical treatment are increasingly constrained by the limitations of supervised learning techniques, which depend heavily on large volumes of annotated data. The annotation process is not only costly but also demands substantial time from clinical specialists. Addressing this issue, we introduce the S4MI (Self-Supervision and Semi-Supervision for Medical Imaging) pipeline, a novel approach that leverages advancements in self-supervised and semi-supervised learning. These techniques engage in auxiliary tasks that do not require labeling, thus simplifying the scaling of machine supervision compared to fully-supervised methods. Our study benchmarks these techniques on three distinct medical imaging datasets to evaluate their effectiveness in classification and segmentation tasks. Notably, we observed that self-supervised learning significantly surpassed the performance of supervised methods in the classification of all evaluated datasets. Remarkably, the semi-supervised approach demonstrated superior outcomes in segmentation, outperforming fully-supervised methods while using 50% fewer labels across all datasets. In line with our commitment to contributing to the scientific community, we have made the S4MI code openly accessible, allowing for broader application and further development of these methods. The code can be accessed at https://github.com/pranavsinghps1/S4MI .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088676PMC
http://dx.doi.org/10.1038/s41598-024-61822-9DOI Listing

Publication Analysis

Top Keywords

machine supervision
8
self-supervised learning
8
learning techniques
8
medical imaging
8
fully-supervised methods
8
shifting machine
4
supervision annotation-efficient
4
annotation-efficient semi
4
semi self-supervised
4
learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!