AI Article Synopsis

  • Global investments in multi-petawatt class laser facilities are increasing, primarily to create high-quality, low-emittance electron bunches.
  • The study examines how a high-intensity femtosecond laser interacts with a limited mass dense target to generate MeV attosecond electron bunches, confirming their low emittance and charge via 3D simulations.
  • Findings indicate that electron bunch energies and laser pulse energy absorption can be effectively quantified through the Zero Vector Potential mechanism, which may significantly impact future particle accelerator technologies.

Article Abstract

The commissioning of multi-petawatt class laser facilities around the world is gathering pace. One of the primary motivations for these investments is the acceleration of high-quality, low-emittance electron bunches. Here we explore the interaction of a high-intensity femtosecond laser pulse with a mass-limited dense target to produce MeV attosecond electron bunches in transmission and confirm with three-dimensional simulation that such bunches have low emittance and nano-Coulomb charge. We then perform a large parameter scan from non-relativistic laser intensities to the laser-QED regime and from the critical plasma density to beyond solid density to demonstrate that the electron bunch energies and the laser pulse energy absorption into the plasma can be quantitatively described via the Zero Vector Potential mechanism. These results have wide-ranging implications for future particle accelerator science and associated technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11088705PMC
http://dx.doi.org/10.1038/s41598-024-61041-2DOI Listing

Publication Analysis

Top Keywords

electron bunches
12
vector potential
8
potential mechanism
8
laser pulse
8
attosecond nano-coulomb
4
electron
4
nano-coulomb electron
4
bunches
4
bunches vector
4
mechanism commissioning
4

Similar Publications

We developed a wideband RF cavity beam position monitor (CBPM) with a 217 MHz bandwidth centered at the 4.875 GHz dipole mode frequency as part of the preliminary research for a high-repetition-rate hard x-ray free electron laser project at the Chinese Academy of Engineering Physics. This paper presents new results demonstrating bunch-by-bunch position measurements on electron bunches spaced by 2.

View Article and Find Full Text PDF

Pulse-by-pulse transient thermal deformation in crystal optics under high-repetition-rate FEL.

J Synchrotron Radiat

January 2025

LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.

Time-domain modeling of the thermal deformation of crystal optics can help define acceptable operational ranges across the pulse-energy repetition-rate phase space. In this paper, we have studied the transient thermal deformation of a water-cooled diamond crystal for a cavity-based X-ray free-electron laser (CBXFEL), either an X-ray free-electron laser oscillator (XFELO) or a regenerative amplifier X-ray free-electron laser (RAFEL), by numerical simulations including finite-element analysis and advanced data processing. Pulse-by-pulse transient thermal deformation of a 50 µm-thick diamond crystal has been performed with X-ray pulse repetition rates between 50 kHz and 1 MHz.

View Article and Find Full Text PDF

The combination of reversible angular dispersion-induced microbunching (ADM) and the rapid damping storage ring provides a storage-ring-based light source with the capability to produce longitudinal coherent radiation with a high repetition rate. This paper presents a prototype design for a test facility based on the study by Jiang et al. [Sci.

View Article and Find Full Text PDF

Microbunching caused by free-electron laser (FEL) interactions in an electron bunch deforms the overall bunch shape. Recent reports indicate the timing of the electron bunch overlapping with the FEL micropulse affects deformation in resonator-type FELs. The electron bunch shape is expected to change with the FEL micropulse energy because the FEL micropulse energy is enhanced within the electron beam macropulse; however, this has not yet been investigated.

View Article and Find Full Text PDF

Large-Area Aligned Growth of Low-Symmetry 2D ReS on a High-Symmetry Surface.

ACS Nano

December 2024

Department of Chemistry and Center of Super-Diamond & Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China.

The large-scale preparation of two-dimensional (2D) materials is pivotal in unlocking their extensive potential for next-generation semiconductor device applications. Wafer-scale single crystals of a high-symmetry 2D material (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!