All-in-one hydrogel patches with sprayed bFGF-loaded GelMA microspheres for infected wound healing studies.

Int J Pharm

Department of Vascular Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province Wenzhou 325000, PR China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China. Electronic address:

Published: June 2024

The current wound healing process faces numerous challenges such as bacterial infection, inflammation and oxidative stress. However, wound dressings used to promote wound healing, are not well suited to meet the clinical needs. Hyaluronic acid (HA) not only has excellent water absorption and good biocompatibility but facilitates cell function and tissue regeneration. Dopamine, on the other hand, increases the overall viscosity of the hydrogel and possesses antioxidant property. Furthermore, chitosan exhibits outstanding performance in antimicrobial, anti-inflammatory and antioxidant activities. Basic fibroblast growth factor (bFGF) is conducive to cell proliferation and migration, vascular regeneration and wound healing. Hence, we designed an all-in-one hydrogel patch containing dopamine and chitosan framed by hyaluronic acid (HDC) with sprayed gelatin methacryloyl (GelMA) microspheres loaded with bFGF (HDC-bFGF). The hydrogel patch exhibits excellent adhesive, anti-inflammatory, antioxidant and antibacterial properties. In vitro experiments, the HDC-bFGF hydrogel patch not only showed significant inhibitory effect on RAW cell inflammation and Staphylococcus aureus (S. aureus) growth but also effectively scavenged free radicals, in addition to promoting the migration of 3 T3 cells. In the mice acute infected wound model, the HDC-bFGF hydrogel patch adhered to the wound surface greatly accelerated the healing process via its anti-inflammatory and antioxidant activities, bacterial inhibition and pro-vascularization effects. Therefore, the multifunctional HDC-bFGF hydrogel patch holds great promise for clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124205DOI Listing

Publication Analysis

Top Keywords

hydrogel patch
20
wound healing
16
hdc-bfgf hydrogel
16
anti-inflammatory antioxidant
12
all-in-one hydrogel
8
gelma microspheres
8
infected wound
8
healing process
8
hyaluronic acid
8
antioxidant activities
8

Similar Publications

Whole-Cell Vaccine Preparation Through Prussian Blue Nanoparticles-Elicited Immunogenic Cell Death and Loading in Gel Microneedles Patches.

Gels

December 2024

State Key Laboratory of Digital Medical Engineering, Basic Medicine Research and Innovation Center of Ministry of Education, Southeast University, Nanjing 211102, China.

Tumor whole-cell vaccines are designed to introduce a wide range of tumor-associated antigens into the body to counteract the immunosuppression caused by tumors. In cases of lymphoma of which the specific antigen is not yet determined, the tumor whole-cell vaccine offers distinct advantages. However, there is still a lack of research on an effective preparation method for the lymphoma whole-cell vaccine.

View Article and Find Full Text PDF

Conventional wearable flexible sensing systems typically comprise three components: a flexible substrate that contacts the skin, a signal processing module, and a signal output module. These components function relatively independently, resulting in a complex system that lacks sufficient integration. Therefore, developing an integrated wearable flexible sensing system by combining the flexible substrate, the signal processing module, and the signal output module not only enhances performance and comfort, but also reduces manufacturing costs and the risk of failure.

View Article and Find Full Text PDF

Intelligent Microneedles Patch with Wireless Self-Sensing and Anti-Infective Actions.

Small

December 2024

Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130012, China.

Traditional microneedle (MN) technology offers unique advantages in treating wound infections; however, its single-function design lacks the capability for real-time monitoring of wound conditions, often resulting in uncontrolled drug release. Herein, an anti-infective and intelligent MN patch (SP-CSMN) integrating three functional modules is developed, including temperature monitoring, Bluetooth wireless communication, and responsive drug release. The patch employed chitosan (CS) as a porous substrate, filled with temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) to encapsulate and release the antibiotic rifampicin.

View Article and Find Full Text PDF

Patients with rheumatoid arthritis (RA), an inflammatory illness that affects the synovial joints, have a much worse quality of life. Mostly, oral or injectable formulations are used to treat RA, underscoring the critical need for an innovative medication delivery method to enhance therapeutic outcomes and patient compliance. The present study integrated 3D bioprinting and electrospinning technologies to create a unique double-layered transdermal patch (TDDP) for the treatment of RA.

View Article and Find Full Text PDF

Vitiligo is a complex dermatological disorder involving the loss of melanocytes, with resultant patches of depigmentation. It affects 1% of the world population, affecting patients' mental health and quality of life. With all the improvement seen, conventional treatment methods-steroids, phototherapy, and immunomodulators-come with the limitations of being less effective, having more side effects, and low compliance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!