A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of "black carbon" on antimony accumulation in traffic-loaded topsoil. | LitMetric

Effect of "black carbon" on antimony accumulation in traffic-loaded topsoil.

Sci Total Environ

Center for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague 6, Czech Republic.

Published: July 2024

Traffic-loaded areas have been of increasing concern due to the potential risk of carcinogenic pollutants, including antimony (Sb), which accumulates mostly in atmospheric particles (PM) and can interact with soil organic matter (C). The stability of Sb in topsoils was studied via the adsorption mechanism using standard soils and C-reach vehicle-produced particles as the unique source of "traffic" Sb. The mixed adsorbents were prepared from loamy sand and clay standard soils, and braking abrasion dust and diesel engine soot as Sb sources in atmospheric PM. Whereas the black carbon (BC), as part of C, disposes of exceptional adsorption properties compared to the other C, all adsorption experiments were performed identically on the adsorbents prepared from the original standard soils and Sb source materials and on the adsorbents prepared from the same materials annealed at 375 °C to ensure only BC participation in adsorption processes. The concentration of the Sb model solution corresponded to the average Sb content in rainwater from traffic-loaded localities. In addition to Sb, the C and iron (Fe) were monitored. The sorbability of Sb on the loamy sand soil mixtures increased up to 90% compared with the pure soil due to new active surface sites for Sb binding created due to the C added with the source material. The clay soil mixture containing 10 times more C compared with the loamy sand soil accumulated the C from the source material, which resulted in blocking active sites and a decline in Sb sorbability by up to 20%. The processes performed identically with original and annealed materials showed the same trends and confirmed the key role of BC and soil quality in the accumulation and stability of Sb in traffic-loaded topsoils. The participation of Fe in Sb surface interactions was not observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173132DOI Listing

Publication Analysis

Top Keywords

standard soils
12
adsorbents prepared
12
loamy sand
12
performed identically
8
sand soil
8
source material
8
soil
6
"black carbon"
4
carbon" antimony
4
antimony accumulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!