Despite the increasing evidence for rapid thermal evolution in natural populations, evolutionary rescue under global warming may be constrained by the presence of other stressors. Highly relevant in our polluted planet, is the largely ignored evolutionary trade-off between heat tolerance and tolerance to pollutants. By using two subpopulations (separated 40 years in time) from a resurrected natural population of the water flea Daphnia magna that experienced a threefold increase in heat wave frequency during this period, we tested whether rapid evolution of heat tolerance resulted in reduced tolerance to the widespread metal zinc and whether this would affect heat tolerance upon exposure to the pollutant. Our results revealed rapid evolution of increased heat tolerance in the recent subpopulation. Notably, the sensitivity to the metal tended to be stronger (reduction in net energy budget) or was only present (reductions in heat tolerance and in sugar content) in the recent subpopulation. As a result, the rapidly evolved higher heat tolerance of the recent subpopulation was fully offset when exposed to zinc. Our results highlight that the many reports of evolutionary rescue to global change stressors may give a too optimistic view as our warming planet is polluted by metals and other pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173070 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China.
Heat shock transcription factors (Hsfs) play an important role in response to high temperatures by binding to the promoter of the heat shock protein gene to promote its expression. As an important ornamental plant, the rose often encounters heat stress during the flowering process. However, there are few studies on the family in roses ().
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Jixian Honors, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China.
Heat stress transcription factors (HSFs) play a critical role in orchestrating cellular responses to elevated temperatures and various stress conditions. While extensively studied in model plants, the gene family in remains unexplored, despite the availability of its sequenced genome. In this study, we employed bioinformatics approaches to identify 21 genes within the genome, revealing their uneven distribution across chromosomes.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Architectural Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China.
is one the most commonly cultivated ornamental plant of economic importance and faces major challenges under heat stress. Melatonin has been widely shown to regulate plant stress response; however, the exact mechanism involved in heat stress in has yet to be determined. Here, we observed that in vitro plantlets supplemented with melatonin in the culture medium exhibited higher chlorophyll content, relative ion leakage, and fresh weight after 12 d of high-temperature treatment; the optimal concentration was established at 5 mg/L.
View Article and Find Full Text PDFBiol Res
January 2025
Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166, Rome, Italy.
Background: Acinetobacter baumannii poses a significant threat globally, causing infections primarily in healthcare settings, with high mortality rates. Its adaptability to antibiotic resistance and tolerance to various stresses, including reactive oxygen species (ROS), contribute to its persistence in healthcare environments. Previous evidence suggested that the periplasmic heat shock protein, HslJ-like protein (ABUW_2868), could be involved in oxidative stress defense in A.
View Article and Find Full Text PDFProtoplasma
January 2025
Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!