Periphytic protozoa are esteemed icons of microbial fauna, renowned for their sensitivity and role as robust bioindicators, pivotal for assessing ecosystem stress and anthropogenic impacts on water quality. Despite their significance, research exploring the community dynamics of protozoan fauna across diverse water columns and depths in shallow waters has been notably lacking. This is the first study that examines the symphony of protozoan fauna in different water columns at varying depths (1, 2, 3.5 and 5 m), in South China Sea. Our findings reveal that vertical changes and environmental heterogeneity plays pivotal role in shaping the protozoan community structure, with distinct preferences observed in spirotrichea and phyllopharyngea classes at specific depths. Briefly, diversity metrics (i.e., both alpha and beta) showed significantly steady patterns at 2 m and 3.5 m depths as well as high homogeneity in most of the indices was observed. Co-associations between environmental parameters and protozoan communities demonstrated temperature, dissolved oxygen, salinity, and pH, are significant drivers discriminating species richness and evenness across all water columns. Noteworthy variations of the other environmental parameters such as SiO-Si, PO-P, and NO-N at 1 m and NO-N, and NH-N, at greater depths, signal the crucial role of nutrient dynamics in shaping the protozoan communities. Moreover, highly sensitive species like Anteholosticha pulchara, Apokeronopsis crassa, and Aspidisca steini in varying environmental conditions among vertical columns may serve as eco- indicators of water quality. Collectively, this study contributes a thorough comprehension of the fine-scale structure and dynamics of protozoan fauna within marine ecosystems, providing insightful perspectives for ecological and water quality assessment in ever-changing marine environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173115 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!