Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to β-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trsl.2024.05.006 | DOI Listing |
Biomed Pharmacother
July 2024
Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address:
Transl Res
September 2024
Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China. Electronic address:
Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing.
View Article and Find Full Text PDFInt Immunopharmacol
May 2024
Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China. Electronic address:
Gene
March 2022
Department of Oncology, Huanggang Central Hospital, Huanggang, Hubei 438000, China. Electronic address:
Objective: Erlotinib was found to be an effective treatment for metastatic kidney renal cell carcinoma (KIRC). This study employed bioinformatics to explore the value of erlotinib's target molecules in KIRC.
Methods: We screened GSE25698 dataset for differentially expressed genes (DEGs) following erlotinib treatment, followed by analyzing their underlying functional mechanisms.
Mol Pharmacol
January 2016
Human Metabolism Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
Human cytochrome P450 (CYP) 2C enzymes metabolize ∼30% of clinically prescribed drugs and various environmental chemicals. CYP2C8, an important member of this subfamily, metabolizes the anticancer drug paclitaxel, certain antidiabetic drugs, and endogenous substrates, including arachidonic acid, to physiologically active epoxyeicosatrienoic acids. Previous studies from our laboratory showed that microRNA 107 (miR107) and microRNA 103 downregulate CYP2C8 post-transcriptionally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!