The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbcan.2024.189107 | DOI Listing |
Development
January 2025
Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.
View Article and Find Full Text PDFTop Stroke Rehabil
January 2025
Department of Medical-Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: The successful transition of stroke patients from hospital to home relies on the preparedness of caregivers. Assessing this preparedness is crucial, but existing tools need adaptation and validation for Iranian caregivers.
Objectives: This study aimed to translate, culturally adapt, and validate the Persian version of the "Preparedness Assessment for the Transition Home After Stroke" (PATH-s) for use among Iranian caregivers of stroke survivors.
Cancer Epidemiol Biomarkers Prev
January 2025
University of Alabama at Birmingham, Birmingham, AL, United States.
Background: The association between skeletal muscle and adipose tissue (body composition) and early response using positron emission tomography (PET) in pediatric Hodgkin lymphoma (HL) remains unstudied.
Methods: Patients enrolled on Children's Oncology Group studies AHOD0031 (intermediate-risk HL) and AHOD0831 (high-risk HL) with digital abdominal computed tomography (CT) scans at diagnosis and PET scans after 2 cycles (PET2) were included. Two consecutive slices at the third lumbar vertebra were identified and skeletal muscle index (SMI, in cm2/m2) and total adipose tissue index (TATI, in cm2/m2) were calculated using sliceOmatic (Magog, Canada) and height at diagnosis.
J Virol
January 2025
SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa.
The Antibody Mediated Prevention (AMP) trials showed that passively infused VRC01, a broadly neutralizing antibody (bNAb) targeting the CD4 binding site (CD4bs) on the HIV-1 envelope protein (Env), protected against neutralization-sensitive viruses. We identified six individuals from the VRC01 treatment arm with multi-lineage breakthrough HIV-1 infections from HVTN703, where one variant was sensitive to VRC01 (IC < 25 ug/mL) but another was resistant. By comparing Env sequences of resistant and sensitive clones from each participant, we identified sites predicted to affect VRC01 neutralization and assessed the effect of their reversion in the VRC01-resistant clone on neutralization sensitivity.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA.
The molecular mechanisms by which vaccinia virus (VACV), the prototypical member of the poxviridae family, reprograms host cell metabolism remain largely unexplored. Additionally, cells sense and respond to fluctuating nutrient availability, thereby modulating metabolic pathways to ensure cellular homeostasis. Understanding how VACV modulates metabolic pathways in response to nutrient signals is crucial for understanding viral replication mechanisms, with the potential for developing antiviral therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!