The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellimm.2024.104827 | DOI Listing |
Front Med (Lausanne)
December 2024
Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
Immune cell effector therapies, including chimeric antigen receptor (CAR)-T cells, T-cell receptor (TCR) T cells, natural killer (NK) cells, and macrophage-based therapies, represent a transformative approach to cancer treatment, harnessing the immune system to target and eradicate malignant cells. CAR-T cell therapy, the most established among these, involves engineering T cells to express CARs specific to cancer cell antigens, showing remarkable efficacy in hematologic malignancies like leukemias, B-cell lymphomas, and multiple myeloma. Similarly, TCR-modified therapies, which reprogram T cells to recognize intracellular tumor antigens presented by major histocompatibility complex (MHC) molecules, offer promise for a range of solid tumors.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology, 630099 Novosibirsk, Russia.
: Adoptive cell therapy is the most promising approach for battling cancer, with T cell receptor-engineered T (TCR-T) cell therapy emerging as the most viable option for treating solid tumors. Current techniques for preparing TCR-T cell therapy provide a limited number of candidates TCRs, missing the comprehensive view of the repertoire, which may hinder the identification of the most effective TCRs. : Dendritic cells were primed with immunogenic peptides of the antigen of interest to expand antigen-specific CD8 T lymphocytes from peripheral blood.
View Article and Find Full Text PDFPac Symp Biocomput
December 2024
Gladstone Institutes, San Francisco, CA 94158, USA.
Genetic perturbation of T cell receptor (TCR) T cells is a promising method to unlock better TCR T cell performance to create more powerful cancer immunotherapies, but understanding the changes to T cell behavior induced by genetic perturbations remains a challenge. Prior studies have evaluated the effect of different genetic modifications with cytokine production and metabolic activity assays. Live-cell imaging is an inexpensive and robust approach to capture TCR T cell responses to cancer.
View Article and Find Full Text PDFExpert Rev Hematol
December 2024
Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Introduction: T cells engineered to express antigen-specific T cell receptors (TCR; TCR-T) are a promising class of immunotherapeutic for patients with hematologic malignancies. Like chimeric antigen receptor-engineered T cells (CAR-T), TCR-T are cell products with defined specificity and composition. Unlike CAR-T, TCR-T can recognize targets arising both from intracellular and cell surface proteins and leverage the sensitivity of natural TCR signaling machinery.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia.
The development of T cell receptor-engineered T cells (TCR-T) targeting intracellular antigens is a promising strategy for treating solid tumors; however, the mechanisms underlying their effectiveness remain poorly understood. In this study, we employed advanced techniques to investigate the functional state of T cells engineered with retroviral vectors to express a TCR specific for the NY-ESO-1 157-165 peptide in the HLA-A*02:01 context. Flow cytometry revealed a predominance of naïve T cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!