Background: The proportion of certain Bacteroidota species decreased in patients with ulcerative colitis, and the recovery of Bacteroidota is associated with the efficacy of fecal microbiota transplantation therapy. We hypothesized that certain Bacteroidota may advance ulcerative colitis treatment. Accordingly, we aimed to evaluate the anti-inflammatory effects of Bacteroidota strains isolated from donors.
Methods: Donors with proven efficacy of fecal microbiota transplantation for ulcerative colitis were selected, and Bacteroidota strains were isolated from their stools. The immune function of Bacteroidota isolates was evaluated through in vitro and in vivo studies.
Results: Twenty-four Bacteroidota strains were isolated and identified. Using an in vitro interleukin (IL)-10 induction assay, we identified 4 Bacteroidota strains with remarkable IL-10-induction activity. Of these, an Alistipes putredinis strain exhibited anti-inflammatory effects in a mouse model of colitis induced by sodium dextran sulfate and oxazolone. However, 16S rRNA gene-based sequencing analysis of A. putredinis cultures in the in vivo study revealed unexpected Veillonella strain contamination. A second in vitro study confirmed that the coculture exhibited an even more potent IL-10-inducing activity. Furthermore, the production of A. putredinis-induced IL-10 was likely mediated via toll-like receptor 2 signaling.
Conclusions: This study demonstrated that A. putredinis, a representative Bacteroidota species, exhibits anti-inflammatory effects in vivo and in vitro; however, the effects of other Bacteroidota species remain unexplored. Our fecal microbiota transplantation-based reverse translation approach using promising bacterial species may represent a breakthrough in microbiome drug development for controlling dysbiosis during ulcerative colitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ibd/izae080 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania 16057, USA.
A polyphasic taxonomic study was carried out on strain T9W2-O, isolated from the roots of the aquatic plant . This isolate is rod-shaped, forms yellow/orange pigmented colonies and produces the pigment flexirubin. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Small, obligately anaerobic strains 13CB8C, 13CB11C, 13CB18C and 13GAM1G were isolated from a faecal sample in a patient with Parkinson's disease with a history of duodenal resection. After conducting a comprehensive polyphasic taxonomic analysis including genomic analysis, we propose the establishment of one new genus and four new species. The novel bacteria are sp.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China. Electronic address:
Heat-induced stress has a significant impact on the health of broilers. It induces panting behavior and elevates oxygen consumption, leading to considerable strain on the broiler lungs. However, the precise effects of heat stress on lung injury, along with changes in the lung and gut microbiota, are not yet fully understood.
View Article and Find Full Text PDFMicroorganisms
November 2024
Institute of Integrative and Systems Biology, Laval University, Quebec, QC G1V 0A6, Canada.
Arctic char is a top predator in Arctic waters and is threatened by mercury pollution in the context of changing climate. Gill microbiota is directly exposed to environmental xenobiotics and play a central role in immunity and fitness. Surprisingly, there is a lack of literature studying the effect of mercury on gill microbiota.
View Article and Find Full Text PDFFoods
December 2024
School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China.
Nitrite hazard is an important food safety issue in the production process of Chinese Northeastern sauerkraut, but this nitrite can be eliminated through microbial enzymatic degradation and acidic degradation as fermentation progresses. Therefore, analyzing the microbial diversity that dominates nitrite degradation in Chinese Northeastern sauerkraut can provide a reference for its safe production. In this study, based on the dynamic monitoring of nitrite concentration, pH, and the abundance of nitrite reductase genes ( and ) and the application of high-throughput sequencing technology and various statistical analysis methods, the microbial groups associated with nitrite enzymatic degradation and acidic degradation in Northeast sauerkraut fermentation broth were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!