Sweet corn has emerged as a favorite food item worldwide owing to its kernel sweetness. However, traditional sweet corn cultivars are poor in provitamin-A (proA) and essential amino acids, viz., lysine and tryptophan. So far, no sweet corn hybrid with high nutritional qualities has been commercialized elsewhere. Here, we analyzed accumulation of provitamin-A (proA), lysine, and tryptophan in a set of mutant versions of (i) crtRB1-, (ii) o2-, and (iii) crtRB1 + o2-based sweet corn inbreds and hybrids with (iv) traditional sweet corn (wild-type: O2 + CrtRB1). The crtRB1- and crtRB1 + o2-based genotypes possessed significantly higher proA (17.31 ppm) over traditional sweet corn (2.83 ppm), while o2- and crtRB1 + o2-based genotypes possessed significantly higher lysine (0.345%) and tryptophan (0.080%) over traditional sweet corn (lysine 0.169%, tryptophan 0.036%). Late sowing favored high kernel lysine, proA, and green cob yield among hybrids. Sweetness (17.87%) among the improved inbreds and hybrids was comparable to the original sweetcorn genotypes (17.84%). Among the four genotypic classes, crtRB1 + o2-based improved genotypes showed stronger association among traits over genotypes with o2 and crtRB1 genes alone. Significant association was observed among (i) proA and BC (r = 0.99), (ii) proA and BCX (r = 0.93), (iii) lysine and tryptophan (r = 0.99), and (iv) green cob yield with fodder yield (r = 0.73) in sweet corn hybrids. The study demonstrated that combining crtRB1 and o2 genes did not pose any negative impact on nutritional, yield, and agronomic performance. Sweet corn with crtRB1 + o2 assumes significance for alleviating malnutrition through sustainable and cost-effective approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13353-024-00873-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!