Anthropomorphic Tendon-Based Hands Controlled by Agonist-Antagonist Corticospinal Neural Network.

Sensors (Basel)

Department of Automation, Electrical Engineering, and Electronic Technology, Polytechnic University of Cartagena, 30203 Cartagena, Spain.

Published: May 2024

This article presents a study on the neurobiological control of voluntary movements for anthropomorphic robotic systems. A corticospinal neural network model has been developed to control joint trajectories in multi-fingered robotic hands. The proposed neural network simulates cortical and spinal areas, as well as the connectivity between them, during the execution of voluntary movements similar to those performed by humans or monkeys. Furthermore, this neural connection allows for the interpretation of functional roles in the motor areas of the brain. The proposed neural control system is tested on the fingers of a robotic hand, which is driven by agonist-antagonist tendons and actuators designed to accurately emulate complex muscular functionality. The experimental results show that the corticospinal controller produces key properties of biological movement control, such as bell-shaped asymmetric velocity profiles and the ability to compensate for disturbances. Movements are dynamically compensated for through sensory feedback. Based on the experimental results, it is concluded that the proposed biologically inspired adaptive neural control system is robust, reliable, and adaptable to robotic platforms with diverse biomechanics and degrees of freedom. The corticospinal network successfully integrates biological concepts with engineering control theory for the generation of functional movement. This research significantly contributes to improving our understanding of neuromotor control in both animals and humans, thus paving the way towards a new frontier in the field of neurobiological control of anthropomorphic robotic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086241PMC
http://dx.doi.org/10.3390/s24092924DOI Listing

Publication Analysis

Top Keywords

neural network
12
corticospinal neural
8
control
8
neurobiological control
8
voluntary movements
8
anthropomorphic robotic
8
robotic systems
8
proposed neural
8
neural control
8
control system
8

Similar Publications

Disrupted brain networks underlying high-fidelity memory retrieval in subjective cognitive decline: A task-based fMRI study.

Alzheimers Dement

December 2024

Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Introduction: Subjective cognitive decline (SCD) is linked to memory complaints and disruptions in certain brain regions identified by molecular imaging and resting-state functional magnetic resonance imaging studies. However, it remains unclear how these regions interact to contribute to both subjective and potential objective memory issues in SCD.

Methods: To address this gap, task-based imaging studies are essential.

View Article and Find Full Text PDF

Evaluating compost maturity, e.g. via manual seed germination index (GI) measurement, is both time-consuming and costly during composting.

View Article and Find Full Text PDF

Predicting lack of clinical improvement following varicose vein ablation using machine learning.

J Vasc Surg Venous Lymphat Disord

December 2024

Department of Surgery, University of Toronto, Canada; Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Canada; Department of Surgery, King Faisal Specialist Hospital and Research Center, Saudi Arabia. Electronic address:

Objective: Varicose vein ablation is generally indicated in patients with active/healed venous ulcers. However, patient selection for intervention in individuals without venous ulcers is less clear. Tools that predict lack of clinical improvement (LCI) following vein ablation may help guide clinical decision-making but remain limited.

View Article and Find Full Text PDF

Ondansetron blocks fluoxetine effects in immature neurons in the adult rat piriform cortex layer II.

Neurosci Lett

December 2024

Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Spain. Electronic address:

Neuronal structural plasticity gives the adult brain the capacity to adapt to internal or external factors by structural and molecular changes. These plastic processes seem to be mediated, among others, by the action of the neurotransmitter serotonin through specific receptors (5-HTRs). Previous studies have shown that the maturation of granule cells in the hippocampus is mediated by 5-HT3.

View Article and Find Full Text PDF

Intrinsic plasticity coding improved spiking actor network for reinforcement learning.

Neural Netw

December 2024

School of Artificial Intelligence, Anhui University, Hefei, 230601, Anhui, China; Engineering Research Center of Autonomous Unmanned System Technology, Ministry of Education, Hefei, 230601, Anhui, China; Anhui Provincial Engineering Research Center for Unmanned Systems and Intelligent Technology, Hefei, 230601, Anhui, China; School of Automation, Southeast University, Nanjing, 211189, Jiangsu, China. Electronic address:

Deep reinforcement learning (DRL) exploits the powerful representational capabilities of deep neural networks (DNNs) and has achieved significant success. However, compared to DNNs, spiking neural networks (SNNs), which operate on binary signals, more closely resemble the biological characteristics of efficient learning observed in the brain. In SNNs, spiking neurons exhibit complex dynamic characteristics and learn based on principles of biological plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!