This paper presents an in-depth analysis of the oscillation phenomenon occurring in multi-chip parallel automotive-grade power modules under short-circuit conditions and investigates three suppression methods. We tested and analyzed two commercial automotive-grade power modules, one containing two chips and the other containing a single chip, and found that short-circuit gate oscillations were more likely to occur in multi-chip parallel packaged modules than in single-chip packaged modules. Through experimental and simulation analyses, we observed that gate oscillations were mainly caused by the interaction between internal parasitic parameters of the module and the external drive circuit, and we found that high drive resistance and low common emitter inductance between parallel chips could effectively suppress gate voltage oscillations. We also analyzed the two mainstream suppression schemes, increasing the drive gate resistance and placing the drive capacitors in parallel. Unfortunately, we found that these suppression schemes were not ideal solutions because both schemes changed the switching characteristics of the power module. As an alternative, we propose a simple and effective solution that involves adding parallel connections between the parallel chips. Simulation calculations showed that this optimized method reduced the emitter inductance between parallel chips in the upper bridge arm by about 30% and in the lower bridge arm by 35%. Through short-circuit experiments conducted at different DC bus voltages, it has been verified that the new optimized solution effectively resolves gate oscillation issues without affecting the switching characteristics of the power module.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086237 | PMC |
http://dx.doi.org/10.3390/s24092858 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!