Ice detection poses significant challenges in sectors such as renewable energy and aviation due to its adverse effects on aircraft performance and wind energy production. Ice buildup alters the surface characteristics of aircraft wings or wind turbine blades, inducing airflow separation and diminishing the aerodynamic properties of these structures. While various approaches have been proposed to address icing effects, including chemical solutions, pneumatic systems, and heating systems, these solutions are often costly and limited in scope. To enhance the cost-effectiveness of ice protection systems, reliable information about current icing conditions, particularly in the early stages, is crucial. Ultrasonic guided waves offer a promising solution for ice detection, enabling integration into critical structures and providing coverage over larger areas. However, existing techniques primarily focus on detecting thick ice layers, leaving a gap in early-stage detection. This paper proposes an approach based on high-order symmetric modes to detect thin ice formation with thicknesses up to a few hundred microns. The method involves measuring the group velocity of the S mode at different temperatures and correlating velocity changes with ice layer formation. Experimental verification of the proposed approach was conducted using a novel group velocity dispersion curve reconstruction method, allowing for the tracking of propagating modes in the structure. Copper samples without and with special superhydrophobic multiscale coatings designed to prevent ice formation were employed for the experiments. The results demonstrated successful detection of ice formation and enabled differentiation between the coated and uncoated cases. Therefore, the proposed approach can be effectively used for early-stage monitoring of ice growth and evaluating the performance of anti-icing coatings, offering promising advancements in ice detection and prevention for critical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086339 | PMC |
http://dx.doi.org/10.3390/s24092850 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!