Sub-Nyquist SAR Imaging and Error Correction Via an Optimization-Based Algorithm.

Sensors (Basel)

The Department of Space Control and Communications, Space Engineering University, Beijing 102249, China.

Published: April 2024

Sub-Nyquist synthetic aperture radar (SAR) based on pseudo-random time-space modulation has been proposed to increase the swath width while preserving the azimuthal resolution. Due to the sub-Nyquist sampling, the scene can be recovered by an optimization-based algorithm. However, these methods suffer from some issues, e.g., manually tuning difficulty and the pre-definition of optimization parameters, and a low signal-noise ratio (SNR) resistance. To address these issues, a reweighted optimization algorithm, named pseudo-ℒ-norm optimization algorithm, is proposed for the sub-Nyquist SAR system in this paper. A modified regularization model is first built by applying the scene prior information to nearly acquire the number of nonzero elements based on Bayesian estimation, and then this model is solved by the Cauchy-Newton method. Additionally, an error correction method combined with our proposed pseudo-ℒ-norm optimization algorithm is also present to eliminate defocusing in the motion-induced model. Finally, experiments with simulated signals and strip-map TerraSAR-X images are carried out to demonstrate the effectiveness and superiority of our proposed algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086087PMC
http://dx.doi.org/10.3390/s24092840DOI Listing

Publication Analysis

Top Keywords

optimization algorithm
12
sub-nyquist sar
8
error correction
8
optimization-based algorithm
8
pseudo-ℒ-norm optimization
8
algorithm
6
sub-nyquist
4
sar imaging
4
imaging error
4
correction optimization-based
4

Similar Publications

Athlete engagement is influenced by several factors, including cohesion, passion and mental toughness. Machine learning methods are frequently employed to construct predictive models as a result of their high efficiency. In order to comprehend the effects of cohesion, passion and mental toughness on athlete engagement, this study utilizes the relevant methods of machine learning to construct a prediction model, so as to find the intrinsic connection between them.

View Article and Find Full Text PDF

The heating oil circuit plays an essential role in the heating calendering roller for the lithium battery pole piece. To achieve the optimization of the heating oil circuit, a fluid-thermal-structural coupling method and a multi-objective optimization procedure are proposed to obtain the optimal solution. A fluid-thermal-structural coupling flowchart based on the numerical modeling for the calendering roller temperature distribution is created to automate the analysis processes in the optimization iteration.

View Article and Find Full Text PDF

Mechanical ventilation is the process through which breathing support is provided to patients who face inconvenience during respiration. During the pandemic, many people were suffering from lung disorders, which elevated the demand for mechanical ventilators. The handling of mechanical ventilators is to be done under the assistance of trained professionals and demands the selection of ideal parameters.

View Article and Find Full Text PDF

A vision model for automated frozen tuna processing.

Sci Rep

January 2025

School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.

Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.

View Article and Find Full Text PDF

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!