The treatment of epilepsy, the second most common chronic neurological disorder, is often complicated by the failure of patients to respond to medication. Treatment failure with anti-seizure medications is often due to the presence of non-epileptic seizures. Distinguishing non-epileptic from epileptic seizures requires an expensive and time-consuming analysis of electroencephalograms (EEGs) recorded in an epilepsy monitoring unit. Machine learning algorithms have been used to detect seizures from EEG, typically using EEG waveform analysis. We employed an alternative approach, using a convolutional neural network (CNN) with transfer learning using MobileNetV2 to emulate the real-world visual analysis of EEG images by epileptologists. A total of 5359 EEG waveform plot images from 107 adult subjects across two epilepsy monitoring units in separate medical facilities were divided into epileptic and non-epileptic groups for training and cross-validation of the CNN. The model achieved an accuracy of 86.9% (Area Under the Curve, AUC 0.92) at the site where training data were extracted and an accuracy of 87.3% (AUC 0.94) at the other site whose data were only used for validation. This investigation demonstrates the high accuracy achievable with CNN analysis of EEG plot images and the robustness of this approach across EEG visualization software, laying the groundwork for further subclassification of seizures using similar approaches in a clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086151PMC
http://dx.doi.org/10.3390/s24092823DOI Listing

Publication Analysis

Top Keywords

analysis eeg
12
plot images
12
non-epileptic seizures
8
machine learning
8
eeg plot
8
epilepsy monitoring
8
eeg waveform
8
eeg
7
seizures
5
analysis
5

Similar Publications

A novel non-invasive EEG-SSVEP diagnostic tool for color vision deficiency in individuals with locked-in syndrome.

Front Bioeng Biotechnol

January 2025

Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.

Introduction: Color vision deficiency (CVD), a common visual impairment, affects individuals' ability to differentiate between various colors due to malfunctioning or absent color photoreceptors in the retina. Currently available diagnostic tests require a behavioral response, rendering them unsuitable for individuals with limited physical and communication abilities, such as those with locked-in syndrome. This study introduces a novel, non-invasive method that employs brain signals, specifically Steady-State Visually Evoked Potentials (SSVEPs), along with Ishihara plates to diagnose CVD.

View Article and Find Full Text PDF

Introduction: We aimed to investigate the effects of central kisspeptin-10 and p234 administration on basal brain activity and epilepsy-like conditions induced by 4-aminopyridine (4-AP), as well as their roles in the electrocorticogram (ECoG) power spectrum and EEG waves.

Methods: Thirty-five male Wistar rats were divided into five groups: sham,4-AP (2.5 mg/kg i.

View Article and Find Full Text PDF

Objectives: Due to the absence of objective diagnostic criteria, tinnitus diagnosis primarily relies on subjective assessments. However, its neuropathological features can be objectively quantified using electroencephalography (EEG). Despite the existing research, the pathophysiology of tinnitus remains unclear.

View Article and Find Full Text PDF

Exploring the Impact of Declarative Learning on the Consolidation of Acquired Motor Skills Under Valence Feedback.

Hum Brain Mapp

February 2025

Neuroscience and Neuroengineering Research Laboratory, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.

Implicit motor learning involves the acquisition and consolidation of motor skills without conscious awareness, influenced by various factors. Punishment and reward have been identified as significant modulators during training, impacting skill acquisition differently. Additionally, the role of a second declarative task in offline consolidation has been explored, affecting both stabilization and enhancement processes during wake and sleep periods.

View Article and Find Full Text PDF

Background: Hyperbaric oxygen (HBO) therapy is an efficacious intervention for patients with prolonged disorders of consciousness (pDOC). Electroencephalographic (EEG) microstate analysis can provide an assessment of the global state of the brain. Currently, the misdiagnosis rate of consciousness-level assessments in patients with pDOC is high.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!