High-pressure pipelines are critical for transporting hazardous materials over long distances, but they face threats from third-party interference activities. Preventive measures are implemented, but interference accidents can still occur, making the need for high-quality detection strategies vital. This paper proposes an end-to-end Artificial Intelligence of Things (AIoT) solution to detect potential interference threats in real time. The solution involves developing a smart visual sensor capable of processing images using state-of-the-art computer vision algorithms and transmitting alerts to pipeline operators in real time. The system's core is based on the object-detection model (e.g., You Only Look Once version 4 (YOLOv4) and DETR with Improved deNoising anchOr boxes (DINO)), trained on a custom Pipeline Visual Threat Assessment (Pipe-VisTA) dataset. Among the trained models, DINO was able to achieve the best Mean Average Precision (mAP) of 71.2% for the unseen test dataset. However, for the deployment on a limited computational-ability edge computer (i.e., the NVIDIA Jetson Nano), the simpler and TensorRT-optimized YOLOv4 model was used, which achieved a mAP of 61.8% for the test dataset. The developed AIoT device captures the image using a camera, processes on the edge using the trained YOLOv4 model to detect the potential threat, transmits the threat alert to a Fleet Portal via LoRaWAN, and hosts the alert on a dashboard via a satellite network. The device has been fully tested in the field to ensure its functionality prior to deployment for the SEA Gas use-case. The AIoT smart solution has been deployed across the 10km stretch of the SEA Gas pipeline across the Murray Bridge section. In total, 48 AIoT devices and three Fleet Portals are installed to ensure the line-of-sight communication between the devices and portals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086124PMC
http://dx.doi.org/10.3390/s24092799DOI Listing

Publication Analysis

Top Keywords

end-to-end artificial
8
artificial intelligence
8
intelligence things
8
things aiot
8
aiot solution
8
detect potential
8
real time
8
test dataset
8
yolov4 model
8
sea gas
8

Similar Publications

A novel spectroscopy-deep learning approach for aqueous multi-heavy metal detection.

Anal Methods

January 2025

Laboratory of Environmental Aquatic Chemistry, Department of Environmental Science, Shaanxi Normal University, Xi'an, 710062, P. R. China.

Addressing heavy metal contamination in water bodies is a critical concern for environmental scientists. Traditional detection methods are often complex and costly. Recent advancements in artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), have shown significant potential in analytical chemistry.

View Article and Find Full Text PDF

Public transportation systems play a vital role in modern cities, but they face growing security challenges, particularly related to incidents of violence. Detecting and responding to violence in real time is crucial for ensuring passenger safety and the smooth operation of these transport networks. To address this issue, we propose an advanced artificial intelligence (AI) solution for identifying unsafe behaviours in public transport.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on developing an AI model to predict myocarditis and cardiovascular issues in cancer patients undergoing immune checkpoint inhibitor therapy, which can improve cancer prognosis but poses cardiovascular risks.
  • The researchers reviewed data from 2,258 patients treated between 2011 and 2022, finding that 11.7% experienced serious cardiovascular events related to the therapy.
  • The AI model, combining electrocardiogram (ECG) data and patient characteristics, showed strong predictive performance with a 0.72 area under the curve, suggesting it could help identify at-risk patients for better clinical management.
View Article and Find Full Text PDF

Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.

View Article and Find Full Text PDF

Wireless sensor networks (WSNs) are imperative to a huge range of packages, along with environmental monitoring, healthcare structures, army surveillance, and smart infrastructure, however they're faced with numerous demanding situations that impede their functionality, including confined strength sources, routing inefficiencies, security vulnerabilities, excessive latency, and the important requirement to keep Quality of Service (QoS). Conventional strategies generally goal particular troubles, like strength optimization or improving QoS, frequently failing to provide a holistic answer that effectively balances more than one crucial elements concurrently. To deal with those challenges, we advocate a novel routing framework that is both steady and power-efficient, leveraging an Improved Type-2 Fuzzy Logic System (IT2FLS) optimized by means of the Reptile Search Algorithm (RSA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!