Biometric authentication plays a vital role in various everyday applications with increasing demands for reliability and security. However, the use of real biometric data for research raises privacy concerns and data scarcity issues. A promising approach using synthetic biometric data to address the resulting unbalanced representation and bias, as well as the limited availability of diverse datasets for the development and evaluation of biometric systems, has emerged. Methods for a parameterized generation of highly realistic synthetic data are emerging and the necessary quality metrics to prove that synthetic data can compare to real data are open research tasks. The generation of 3D synthetic face data using game engines' capabilities of generating varied realistic virtual characters is explored as a possible alternative for generating synthetic face data while maintaining reproducibility and ground truth, as opposed to other creation methods. While synthetic data offer several benefits, including improved resilience against data privacy concerns, the limitations and challenges associated with their usage are addressed. Our work shows concurrent behavior in comparing semi-synthetic data as a digital representation of a real identity with their real datasets. Despite slight asymmetrical performance in comparison with a larger database of real samples, a promising performance in face data authentication is shown, which lays the foundation for further investigations with digital avatars and the creation and analysis of fully synthetic data. Future directions for improving synthetic biometric data generation and their impact on advancing biometrics research are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086228 | PMC |
http://dx.doi.org/10.3390/s24092750 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!