Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The most reliable methods for pregnancy diagnosis in dairy herds include rectal palpation, ultrasound examination, and evaluation of plasma progesterone concentrations. However, these methods are expensive, labor-intensive, and invasive. Thus, there is a need to develop a practical, non-invasive, cost-effective method that can be implemented on the farm to detect pregnancy. This study suggests employing microwave dielectric spectroscopy (MDS, 0.5-40 GHz) as a method to evaluate reproduction events in dairy cows. The approach involves the integration of MDS data with information on milk solids to detect pregnancy and identify early embryonic loss in dairy cows. To test the ability to predict pregnancy according to these measurements, milk samples were collected from (i) pregnant and non-pregnant randomly selected cows, (ii) weekly from selected cows ( = 12) before insemination until a positive pregnancy test, and (iii) daily from selected cows ( = 10) prior to insemination until a positive pregnancy test. The results indicated that the dielectric strength of Δ and the relaxation time, , exhibited reduced variability in the case of a positive pregnancy diagnosis. Using principal component analysis (PCA), a clear distinction between pregnancy and nonpregnancy status was observed, with improved differentiation upon a higher sampling frequency. Additionally, a neural network machine learning technique was employed to develop a prediction algorithm with an accuracy of 73%. These findings demonstrate that MDS can be used to detect changes in milk upon pregnancy. The developed machine learning provides a broad classification that could be further enhanced with additional data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086119 | PMC |
http://dx.doi.org/10.3390/s24092742 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!