Flexible and Reconfigurable OFDM Implementation in DSP Platform for Various Purposes and Applications.

Sensors (Basel)

Electronics-Telecommunications and Applications Laboratory, Physics Department, University of Ioannina, 45110 Ioannina, Greece.

Published: April 2024

In the modern technological era of sophisticated applications and high-quality communications, a platform of clever strategy and quickly updated systems is needed. It should be capable of withstanding the fastest emerging problems like signal attenuation and hostile actions intended to harm the whole network. The main contributions of this work are the production of an OFDM system (with low cost) that can sustain high-speed communications and be easily adjusted with new integrated code while exhibiting the feasibility of implementing a transmitter-receiver system in the same DSP and demonstrating the holistic approach with the qualitative integration of such an architecture in a warfare scenario. Specifically, in this research, the point of view is toward three facts. The first is to show a method of quick self-checking the operational status of a digital signal processor (DSP) platform and then the pedagogical issues of how to fast check and implement an updated code inside DSPs through simple schematics. The second point is to present the prototype system that can easily be programmed using a graphical user interface (GUI) and can change its properties (such as the transmitted modulated sinusoids-orthogonal frequency division multiplexing subcarriers). Alongside the presentation, the measurements are presented and discussed. These were acquired with the use of an oscilloscope and spectrum analyzer. The third point is to qualitatively show the application of such a system inside a modern warfare environment and to recommend various potential system responses according to the development of such a platform of reconfigurable implemented OFDM systems. The implementation was performed for two types of systems: (1) transmitter and (2) transmitter-receiver system. Notably, the system acts quickly with a delay of about 1 msec in the case of transmitting and receiving in the same DSP, suggesting excellent future results under real conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086341PMC
http://dx.doi.org/10.3390/s24092732DOI Listing

Publication Analysis

Top Keywords

dsp platform
8
transmitter-receiver system
8
system
7
flexible reconfigurable
4
reconfigurable ofdm
4
ofdm implementation
4
dsp
4
implementation dsp
4
platform
4
platform purposes
4

Similar Publications

Spatial transcriptomics technology enables the mapping of gene expression within tissues, allowing researchers to visualize the spatial distribution of RNA molecules and gain insights into cellular organization, interactions, and functions in their native environments. A variety of spatial technologies are now commercially available, each offering distinct technical parameters such as cellular resolution, detection sensitivity, gene coverage, and throughput. This wide range of options can make it challenges or create confusion for researchers to select the most appropriate platform for their specific research objectives.

View Article and Find Full Text PDF

The health of poultry flock is crucial in sustainable farming. Recent advances in machine learning and speech analysis have opened up opportunities for real-time monitoring of the behavior and health of flock. However, there has been little research on using Tiny Machine Learning (Tiny ML) for continuous vocalization monitoring in poultry.

View Article and Find Full Text PDF

An off-chip platform for on-demand, single-target encapsulation for ultrasensitive biomarker detection.

Biosens Bioelectron

March 2025

Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address:

Closed-channel microfluidic systems offer versatile on-chip capabilities for bioanalysis but often face complex fabrication and operational challenges. In contrast, free-boundary off-chip microfluidic platforms are relatively simple to fabricate and operate but lack the ability to perform complex tasks such as on-demand single-target sorting and encapsulation. To address these challenges, we develop an off-chip platform powered by a fluorescent-activated mechanical droplet sorting and production (FAM-DSP) system.

View Article and Find Full Text PDF

UniFORM: Towards Universal Immunofluorescence Normalization for Multiplex Tissue Imaging.

bioRxiv

December 2024

Department of Biomedical Engineering and Computational Biology Program, OHSU, Portland, OR, USA.

Multiplexed tissue imaging (MTI) technologies enable high-dimensional spatial analysis of tumor microenvironments but face challenges with technical variability in staining intensities. Existing normalization methods, including z-score, ComBat, and MxNorm, often fail to account for the heterogeneous, right-skewed expression patterns of MTI data, compromising signal alignment and downstream analyses. We present UniFORM, a non-parametric, Python-based pipeline for normalizing both feature- and pixel-level MTI data.

View Article and Find Full Text PDF

Two types of neuron models are constructed in this paper, namely the single discrete memristive synaptic neuron model and the dual discrete memristive synaptic neuron model. Firstly, it is proved that both models have only one unstable equilibrium point. Then, the influence of the coupling strength parameters and neural membrane amplification coefficient of the corresponding system of the two models on the rich dynamical behavior of the systems is analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!