A Multiple Attention Convolutional Neural Networks for Diesel Engine Fault Diagnosis.

Sensors (Basel)

State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, China.

Published: April 2024

Fault diagnosis can improve the safety and reliability of diesel engines. An end-to-end method based on a multi-attention convolutional neural network (MACNN) is proposed for accurate and efficient diesel engine fault diagnosis. By optimizing the arrangement and kernel size of the channel and spatial attention modules, the feature extraction capability is improved, and an improved convolutional block attention module (ICBAM) is obtained. Vibration signal features are acquired using a feature extraction model alternating between the convolutional neural network (CNN) and ICBAM. The feature map is recombined to reconstruct the sequence order information. Next, the self-attention mechanism (SAM) is applied to learn the recombined sequence features directly. A Swish activation function is introduced to solve "Dead ReLU" and improve the accuracy. A dynamic learning rate curve is designed to improve the convergence ability of the model. The diesel engine fault simulation experiment is carried out to simulate three kinds of fault types (abnormal valve clearance, abnormal rail pressure, and insufficient fuel supply), and each kind of fault varies in different degrees. The comparison results show that the accuracy of MACNN on the eight-class fault dataset at different speeds is more than 97%. The testing time of the MACNN is much less than the machine running time (for one work cycle). Therefore, the proposed end-to-end fault diagnosis method has a good application prospect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11086139PMC
http://dx.doi.org/10.3390/s24092708DOI Listing

Publication Analysis

Top Keywords

fault diagnosis
16
convolutional neural
12
diesel engine
12
engine fault
12
fault
8
neural network
8
feature extraction
8
multiple attention
4
convolutional
4
attention convolutional
4

Similar Publications

This paper explores a novel challenge regarding bidirectional Automated Guided Vehicles (AGVs): supervisory control amidst potential sensor faults. The proposed approach uses an event-based control architecture, guided by Supervisory Control Theory (SCT), to achieve non-blocking routing of AGVs. Unlike most routing approaches assuming full event observability, this paper investigates scenarios where events might become unobservable due to sensor faults or disturbances, which may affect the supervisor efficiency.

View Article and Find Full Text PDF

Temporal logic inference for interpretable fault diagnosis of bearings via sparse and structured neural attention.

ISA Trans

January 2025

State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

This paper addresses the critical challenge of interpretability in machine learning methods for machine fault diagnosis by introducing a novel ad hoc interpretable neural network structure called Sparse Temporal Logic Network (STLN). STLN conceptualizes network neurons as logical propositions and constructs formal connections between them using specified logical operators, which can be articulated and understood as a formal language called Weighted Signal Temporal Logic. The network includes a basic word network using wavelet kernels to extract intelligible features, a transformer encoder with sparse and structured neural attention to locate informative signal segments relevant to decision-making, and a logic network to synthesize a coherent language for fault explanation.

View Article and Find Full Text PDF

Centrifugal compressors are widely used in the oil and natural gas industry for gas compression, reinjection, and transportation. Fault diagnosis and identification of centrifugal compressors are crucial. To promptly monitor abnormal changes in compressor data and trace the causes leading to these data anomalies, this paper proposes a security monitoring and root cause tracing method for compressor data anomalies.

View Article and Find Full Text PDF

Condition monitoring and fault classification in engineering systems is a critical challenge within the scope of Prognostics and Health Management (PHM). The fault diagnosis of complex nonlinear systems, such as hydraulic systems, has become increasingly important due to advancements in big data analytics, machine learning (ML), Industry 4.0, and Internet of Things (IoT) applications.

View Article and Find Full Text PDF

A novel swarm budorcas taxicolor optimization-based multi-support vector method for transformer fault diagnosis.

Neural Netw

January 2025

School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Key Laboratory of Autonomous Systems and Network Control, Ministry of Education, South China University of Technology, Guangzhou, 510640, China; Institute for Super Robotics (Huangpu), Guangzhou, 510555, China; Nanchang University, Nanchang, 330031, China; College of Computer Science and Engineering, Jishou University, Jishou, 416000, China; Guangdong Artificial Intelligence and Digital Economy Laboratory (Pazhou Lab), Guangzhou, 510335, China; School of Electronical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China; School of Information Science and Engineering, Changsha Normal University, Changsha, 410100, China; Institute of Artificial Intelligence and Automation, Guangdong University of Petrochemical Technology, Maoming, 525000, China. Electronic address:

To address the challenge of low recognition accuracy in transformer fault detection, a novel method called swarm budorcas taxicolor optimization-based multi-support vector (SBTO-MSV) is proposed. Firstly, a multi-support vector (MSV) model is proposed to realize multi-classification of transformer faults based on dissolved gas data. Then, a swarm budorcas taxicolor optimization (SBTO) algorithm is proposed to iteratively search the optimal model parameters during MSV model training, so as to obtain the most effective transformer fault diagnosis model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!