Currently, surface EMG signals have a wide range of applications in human-computer interaction systems. However, selecting features for gesture recognition models based on traditional machine learning can be challenging and may not yield satisfactory results. Considering the strong nonlinear generalization ability of neural networks, this paper proposes a two-stream residual network model with an attention mechanism for gesture recognition. One branch processes surface EMG signals, while the other processes hand acceleration signals. Segmented networks are utilized to fully extract the physiological and kinematic features of the hand. To enhance the model's capacity to learn crucial information, we introduce an attention mechanism after global average pooling. This mechanism strengthens relevant features and weakens irrelevant ones. Finally, the deep features obtained from the two branches of learning are fused to further improve the accuracy of multi-gesture recognition. The experiments conducted on the NinaPro DB2 public dataset resulted in a recognition accuracy of 88.25% for 49 gestures. This demonstrates that our network model can effectively capture gesture features, enhancing accuracy and robustness across various gestures. This approach to multi-source information fusion is expected to provide more accurate and real-time commands for exoskeleton robots and myoelectric prosthetic control systems, thereby enhancing the user experience and the naturalness of robot operation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085498PMC
http://dx.doi.org/10.3390/s24092702DOI Listing

Publication Analysis

Top Keywords

gesture recognition
12
two-stream residual
8
residual network
8
acceleration signals
8
surface emg
8
emg signals
8
network model
8
attention mechanism
8
recognition
5
signals
5

Similar Publications

Instruction-induced modulation of the visual stream during gesture observation.

Neuropsychologia

January 2025

Neuroscience Area, SISSA, Trieste, Italy; Dipartimento di Medicina dei Sistemi, Università di Roma-Tor Vergata, Roma, Italy.

Although gesture observation tasks are believed to invariably activate the action-observation network (AON), we investigated whether the activation of different cognitive mechanisms when processing identical stimuli with different explicit instructions modulates AON activations. Accordingly, 24 healthy right-handed individuals observed gestures and they processed both the actor's moved hand (hand laterality judgment task, HT) and the meaning of the actor's gesture (meaning task, MT). The main brain-level result was that the HT (vs MT) differentially activated the left and right precuneus, the left inferior parietal lobe, the left and right superior parietal lobe, the middle frontal gyri bilaterally and the left precentral gyrus.

View Article and Find Full Text PDF

Background: Individuals with hearing impairments may face hindrances in health care assistance, which may significantly impact the prognosis and the incidence of complications and iatrogenic events. Therefore, the development of automatic communication systems to assist the interaction between this population and health care workers is paramount.

Objective: This study aims to systematically review the evidence on communication systems using human-computer interaction techniques developed for deaf people who communicate through sign language that are already in use or proposed for use in health care contexts and have been tested with human users or videos of human users.

View Article and Find Full Text PDF

The dataset represents a significant advancement in Bengali lip-reading and visual speech recognition research, poised to drive future applications and technological progress. Despite Bengali's global status as the seventh most spoken language with approximately 265 million speakers, linguistically rich and widely spoken languages like Bengali have been largely overlooked by the research community. fills this gap by offering a pioneering dataset tailored for Bengali lip-reading, comprising visual data from 150 speakers across 54 classes, encompassing Bengali phonemes, alphabets, and symbols.

View Article and Find Full Text PDF

Visual sensors, including 3D light detection and ranging, neuromorphic dynamic vision sensor, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. However, their data are heterogeneous, causing complexity in system development. Moreover, conventional digital hardware is constrained by von Neumann bottleneck and the physical limit of transistor scaling.

View Article and Find Full Text PDF

Gesture-controlled reconfigurable metasurface system based on surface electromyography for real-time electromagnetic wave manipulation.

Nanophotonics

January 2025

Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!