In robot-assisted microsurgery (RAMS), surgeons often face the challenge of operating with minimal feedback, particularly lacking in haptic feedback. However, most traditional desktop haptic devices have restricted operational areas and limited dexterity. This report describes a novel, lightweight, and low-budget wearable haptic controller for teleoperated microsurgical robotic systems. We designed a wearable haptic interface entirely made using off-the-shelf material-PolyJet Photopolymer, fabricated using liquid and solid hybrid 3D co-printing technology. This interface was designed to resemble human soft tissues and can be wrapped around the fingertips, offering direct contact feedback to the operator. We also demonstrated that the device can be easily integrated with our motion tracking system for remote microsurgery. Two motion tracking methods, marker-based and marker-less, were compared in trajectory-tracking experiments at different depths to find the most effective motion tracking method for our RAMS system. The results indicate that within the 4 to 8 cm tracking range, the marker-based method achieved exceptional detection rates. Furthermore, the performance of three fusion algorithms was compared to establish the unscented Kalman filter as the most accurate and reliable. The effectiveness of the wearable haptic controller was evaluated through user studies focusing on the usefulness of haptic feedback. The results revealed that haptic feedback significantly enhances depth perception for operators during teleoperated RAMS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085189 | PMC |
http://dx.doi.org/10.3390/s24092676 | DOI Listing |
Sci Rep
January 2025
School of Computer Science and Engineering, Southeast University, Nanjing, China.
The rapid urbanization has led to the loss of natural spaces and a subsequent disconnection between humans and nature, negatively affecting residents' well-being and environmental awareness. There is a a growing interest in leveraging technology to address this gap in Human-Computer Interaction. This article introduces GoChirp, an AI-powered wearable device for enhancing nature relatedness within urban landscapes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Industrial Design, Guangdong University of Technology, Guangzhou 510006, China.
Research into new solutions for wearable assistive devices for the visually impaired is an important area of assistive technology (AT). This plays a crucial role in improving the functionality and independence of the visually impaired, helping them to participate fully in their daily lives and in various community activities. This study presents a bibliometric analysis of the literature published over the last decade on wearable assistive devices for the visually impaired, retrieved from the Web of Science Core Collection (WoSCC) using CiteSpace, to provide an overview of the current state of research, trends, and hotspots in the field.
View Article and Find Full Text PDFAnn Biomed Eng
December 2024
Department of Mechanical Engineering, The Biorobotics and Biomechanics Lab, University of Maine, 168 College Ave, Orono, ME, 04469, USA.
Purpose: Current gait rehabilitation protocols for older adults typically attempt to effect changes in leg movements, while the role of arm movements is often ignored despite evidence of the neurological coupling of the upper and lower extremities. In the present work, we examine the effectiveness of a novel wearable haptic cueing system that targets arm swing to improve various gait parameters in older adults.
Methods: Twenty participants ( years) were recruited to analyze their gait during normal and fast walking without haptic cueing.
J Neural Eng
December 2024
Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, Florence, Italy.
. The perception of softness plays a key role in interactions with various objects, both in the real world and in virtual/augmented reality (VR/AR) systems. The latter can be enriched with haptic feedback on virtual objects' softness to improve immersivity and realism.
View Article and Find Full Text PDFSci Robot
December 2024
CHARM Laboratory, Stanford, CA, USA.
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!