A composite structure containing a metallic skeleton and polyurea elastomer interpenetrating phase was fabricated, and its anti-penetration performance for low-velocity large mass fragments was experimentally studied. The protection capacity of three polyurea was compared based on the penetration resistance force measurement. Results show that the polyurea coating layer at the backside improves the performance of the polyurea-filled spherical cell porous aluminum (SCPA) plate due to its backside support effect and phase transition effect, which are accompanied by a large amount of energy absorption. The frontal-side-coated polyurea layer failed to shear and provided a very limited strengthening effect on the penetration resistance of the interpenetrating phase composite panel. The filling polyurea in SCPA increased the damage area and formed a compression cone for the backside coating layer, leading to a significant stress diffusion effect. The anti-penetration performance was synergistically improved by the plug block effect of the interpenetrating phase composite and the backside support effect of the PU coating layer. Compared with SCPA, the initial impact failure strength and the average resistance force of the composite plate were improved by 120-200% and 108-274%, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085816 | PMC |
http://dx.doi.org/10.3390/polym16091249 | DOI Listing |
Sci Rep
December 2024
Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA.
This work aims to address key issues in the ballistic performance of ceramic-based composite armor, particularly at the joints of spliced bulletproof panels. The edge structure of C/C-SiC ceramic plates and ultra-high molecular weight polyethylene is redesigned to superimpose the joint areas. These structurally optimized composite pads are examined by numerical simulation of impact dynamics to understand their anti-penetration performance whose accuracy is then validated by live fire tests.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Biomolecular Materials Science Research Center, Beijing 100120, China.
The material properties and structural characteristics of ballistic composites are crucial to their ballistic performance. A numerical model of a 1.1 g FSP penetrating a UHMWPE target plate was established in this paper.
View Article and Find Full Text PDFPolymers (Basel)
April 2024
School of Aeronautics and Astronautics, North University of China, Taiyuan 030051, China.
A composite structure containing a metallic skeleton and polyurea elastomer interpenetrating phase was fabricated, and its anti-penetration performance for low-velocity large mass fragments was experimentally studied. The protection capacity of three polyurea was compared based on the penetration resistance force measurement. Results show that the polyurea coating layer at the backside improves the performance of the polyurea-filled spherical cell porous aluminum (SCPA) plate due to its backside support effect and phase transition effect, which are accompanied by a large amount of energy absorption.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.
Polydimethylsiloxane (PDMS) has been widely used as a surface coating material, which has been reported to possess dynamic omniphobicity to a wide range of both polar and nonpolar solvents due to its high segmental flexibility and mobility. However, such high flexibility and mobility also enable penetration of small molecules into PDMS coatings, which alter the chemical and physical properties of the coating layers. To improve the anti-penetration properties of PDMS, a series of fluorinated alkyl segments are grafted to a diblock copolymer of polystyrene--poly(vinyl methyl siloxane) (PS--PVMS) using thiol-ene click reactions.
View Article and Find Full Text PDFMaterials (Basel)
August 2023
Institute of Defense Engineering, Academy of Military Science, People's Liberation Army, Beijing 100036, China.
Ceramic panel collapse will easily lead to the failure of traditional targets. One strategy to solve this problem is to use separate ceramic units as armor panels. Based on this idea, we propose an aluminum matrix composite using pressure infiltration, containing an array of ceramic balls, the reinforcement of which consists of centimeter-scale SiC balls and micron-scale BC particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!